Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries

被引:713
作者
Xia, Shuixin [1 ]
Wu, Xinsheng [1 ]
Zhang, Zhichu [1 ]
Cui, Yi [2 ,3 ]
Liu, Wei [1 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
来源
CHEM | 2019年 / 5卷 / 04期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
COMPOSITE POLYMER ELECTROLYTE; HIGH IONIC-CONDUCTIVITY; ENHANCED ELECTROCHEMICAL PERFORMANCE; INTERFACE MODIFICATION; SUPERIONIC CONDUCTIVITY; POLY(ETHYLENE OXIDE); GLASS-CERAMICS; THIN-FILM; CATHODE; LI7LA3ZR2O12;
D O I
10.1016/j.chempr.2018.11.013
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fundamental understandings and technological innovations in lithium-ion batteries are essential for delivering high energy density, stable cyclability, and cost-effective energy storages with the growing demands in the applications of electrical vehicles and smart grid. Solid-state electrolytes (SSEs) are more promising than organic liquid electrolyte in terms of excellent safety in developing lithium-metal anode as well as other high-capacity cathode chemistries, such as sulfur and oxygen. Considerable efforts have been made to give birth to the superionic conductors with ionic conductivities higher than 10(-3) S cm(-1) at room temperature. However, the high interfacial impedances from the poor compatibility of SSEs with electrodes limit their practical applications, which are discussed in this review. Furthermore, the recent advances and critical challenges for all-solid-state lithium-metal batteries based on the cathode materials of lithium-intercalation compounds, sulfur, and oxygen are overviewed, and their future developments are also prospected.
引用
收藏
页码:753 / 785
页数:33
相关论文
共 151 条
  • [1] A polymer electrolyte-based rechargeable lithium/oxygen battery
    Abraham, KM
    Jiang, Z
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) : 1 - 5
  • [2] Lithium ion conductivity and thermal behaviour of glasses and crystallised glasses in the system Li2O-Al2O3-TiO2-P2O5
    Abrahams, I
    Hadzifejzovic, E
    [J]. SOLID STATE IONICS, 2000, 134 (3-4) : 249 - 257
  • [3] Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12
    Allen, J. L.
    Wolfenstine, J.
    Rangasamy, E.
    Sakamoto, J.
    [J]. JOURNAL OF POWER SOURCES, 2012, 206 : 315 - 319
  • [4] [Anonymous], 1957, ANN CHIM PARIS
  • [5] [Anonymous], 2011, ANGEW CHEM
  • [6] [Anonymous], 1986, POLYM CARBONE SOUFRE
  • [7] KINETICS AND STABILITY OF THE LITHIUM ELECTRODE IN POLY(METHYLMETHACRYLATE)-BASED GEL ELECTROLYTES
    APPETECCHI, GB
    CROCE, F
    SCROSATI, B
    [J]. ELECTROCHIMICA ACTA, 1995, 40 (08) : 991 - 997
  • [8] Armand M. B., 1979, Fast Ion Transport in Solids. Electrodes and Electrolytes, P131
  • [9] All-Solid-State Lithium Secondary Batteries Using NiS-Carbon Fiber Composite Electrodes Coated with Li2S-P2S5 Solid Electrolytes by Pulsed Laser Deposition
    Aso, Keigo
    Sakuda, Atsushi
    Hayashi, Akitoshi
    Tatsumisago, Masahiro
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (03) : 686 - 690
  • [10] Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12
    Awaka, Junji
    Takashima, Akira
    Kataoka, Kunimitsu
    Kijima, Norihito
    Idemoto, Yasushi
    Akimoto, Junji
    [J]. CHEMISTRY LETTERS, 2011, 40 (01) : 60 - 62