Sharp bounds for the signless Laplacian spectral radius in terms of clique number

被引:40
|
作者
He, Bian [1 ]
Jin, Ya-Lei [1 ]
Zhang, Xiao-Dong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Signless Laplacian spectral radius; Clique number; Turan graph; GRAPHS; EIGENVALUES; THEOREM;
D O I
10.1016/j.laa.2011.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a sharp upper and lower bounds for the signless Laplacian spectral radius of graphs in terms of clique number. Moreover, the extremal graphs which attain the upper and lower bounds are characterized. In addition, these results disprove the two conjectures on the signless Laplacian spectral radius in [8]. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3851 / 3861
页数:11
相关论文
共 50 条
  • [41] On the maximum signless Laplacian spectral radius of bipartite graphs
    Niu, Aihong
    Fan, Dandan
    Wang, Guoping
    ARS COMBINATORIA, 2018, 140 : 389 - 395
  • [42] The (distance) signless Laplacian spectral radius of digraphs with given arc connectivity
    Xi, Weige
    So, Wasin
    Wang, Ligong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 581 : 85 - 111
  • [43] On the signless Laplacian spectral radius of tricyclic graphs with η vertices and diameter d
    Pai, Xinying
    Liu, Sanyang
    ARS COMBINATORIA, 2017, 132 : 295 - 309
  • [44] The effect of graft transformations on distance signless Laplacian spectral radius
    Lin, Hongying
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 504 : 433 - 461
  • [45] On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
    Ramane, Harishchandra
    Gudodagi, Gouramma
    Manjalapur, Vinayak V.
    Alhevaz, Abdollah
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2019, 14 (02): : 105 - 125
  • [46] The maximum clique and the signless Laplacian eigenvalues
    Jianping Liu
    Bolian Liu
    Czechoslovak Mathematical Journal, 2008, 58 : 1233 - 1240
  • [47] THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF SOME STRONGLY CONNECTED DIGRAPHS
    Li, Xihe
    Wang, Ligong
    Zhang, Shangyuan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (01) : 113 - 127
  • [48] The signless Laplacian spectral radius of graphs with given degree sequences
    Zhang, Xiao-Dong
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) : 2928 - 2937
  • [49] On the signless Laplacian spectral radius of bicyclic graphs with fixed diameter
    Pai, Xinying
    Liu, Sanyang
    ARS COMBINATORIA, 2017, 130 : 249 - 265
  • [50] On the bounds for signless Laplacian energy of a graph
    Ganie, Hilal A.
    Pirzada, S.
    DISCRETE APPLIED MATHEMATICS, 2017, 228 : 3 - 13