Sharp bounds for the signless Laplacian spectral radius in terms of clique number

被引:40
|
作者
He, Bian [1 ]
Jin, Ya-Lei [1 ]
Zhang, Xiao-Dong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Signless Laplacian spectral radius; Clique number; Turan graph; GRAPHS; EIGENVALUES; THEOREM;
D O I
10.1016/j.laa.2011.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a sharp upper and lower bounds for the signless Laplacian spectral radius of graphs in terms of clique number. Moreover, the extremal graphs which attain the upper and lower bounds are characterized. In addition, these results disprove the two conjectures on the signless Laplacian spectral radius in [8]. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3851 / 3861
页数:11
相关论文
共 50 条
  • [21] Sharp Bounds on the Signless Laplacian Spread of Graphs
    Li, Dong
    Liu, Huiqing
    Zhang, Shunzhe
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (04) : 1011 - 1020
  • [22] On the Signless Laplacian Spectral Radius of Cacti
    Chen, Mingzhu
    Zhou, Bo
    CROATICA CHEMICA ACTA, 2016, 89 (04) : 493 - 498
  • [23] The smallest Laplacian spectral radius of graphs with a given clique number
    Guo, Ji-Ming
    Li, Jianxi
    Shiu, Wai Chee
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (04) : 1109 - 1122
  • [24] ON THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF UNICYCLIC GRAPHS WITH FIXED MATCHING NUMBER
    Zhang, Jing-Ming
    Huang, Ting-Zhu
    Guo, Ji-Ming
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 97 (111): : 187 - 197
  • [25] Some bounds on spectral radius of signless Laplacian matrix of k-graphs
    Zhang, Junhao
    Zhu, Zhongxun
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (04) : 2267 - 2278
  • [26] Distance (signless) Laplacian spectral radius of uniform hypergraphs
    Lin, Hongying
    Zhou, Bo
    Wang, Yanna
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 529 : 271 - 293
  • [27] The (Signless Laplacian) Spectral Radius (Of Subgraphs) of Uniform Hypergraphs
    Duan, Cunxiang
    Wang, Ligong
    Xiao, Peng
    Li, Xihe
    FILOMAT, 2019, 33 (15) : 4733 - 4745
  • [28] Signless Laplacian spectral radius and fractional matchings in graphs
    Pan, Yingui
    Li, Jianping
    Zhao, Wei
    DISCRETE MATHEMATICS, 2020, 343 (10)
  • [29] Distance signless Laplacian eigenvalues, diameter, and clique number
    Khan, Saleem
    Pirzada, Shariefuddin
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 28 - 31
  • [30] Graphs with maximal signless Laplacian spectral radius
    Chang, Ting-Jung
    Tam, Bit-Shun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (07) : 1708 - 1733