Phase-field modeling of the discontinuous precipitation reaction

被引:23
作者
Amirouche, Lynda [1 ,2 ]
Plapp, Mathis [1 ]
机构
[1] Ecole Polytech, CNRS, F-91128 Palaiseau, France
[2] USTHB, Fac Phys, Phys Theor Lab, Bab Ezzouar 16311, Alger, Algeria
关键词
Phase-feild modeling; Percipitation; Grain boundary diffusion; Phase transformation kinetics; Microstructure; ELASTIC STRAIN; GROWTH; SOLIDIFICATION; ZN;
D O I
10.1016/j.actamat.2008.09.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A multi-phase-field model for the description of the discontinuous precipitation reaction is formulated which takes into account surface diffusion along grain boundaries and interfaces as well as volume diffusion. Simulations reveal that the structure and steady-state growth velocity of spatially periodic precipitation fronts depend strongly on the relative magnitudes of the diffusion coefficients. Steady-state solutions always exist for a range of interlamellar spacings that is limited by a fold singularity for low spacings, and by the onset of tip-splitting or oscillatory instabilities for large spacings. A detailed analysis of the simulation data reveals that the hypothesis of local equilibrium at interfaces, used in previous theories, is not valid for the typical conditions of discontinuous precipitation. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:237 / 247
页数:11
相关论文
共 50 条
[31]   CALPHAD and Phase-Field Modeling: A Successful Liaison [J].
I. Steinbach ;
B. Böttger ;
J. Eiken ;
N. Warnken ;
S. G. Fries .
Journal of Phase Equilibria and Diffusion, 2007, 28 :101-106
[32]   Phase-field modeling of fracture via homogenization [J].
Villalta, Gerard ;
Ferrer, Alex ;
Otero, Fermin .
INTERNATIONAL JOURNAL OF FRACTURE, 2025, 249 (03)
[33]   Phase-field Modeling and Simulations of Dendrite Growth [J].
Takaki, Tomohiro .
ISIJ INTERNATIONAL, 2014, 54 (02) :437-444
[34]   CALPHAD-informed phase-field modeling of grain boundary microchemistry and precipitation in Al-Zn-Mg-Cu alloys [J].
Liu, Chuanlai ;
Garner, Alistair ;
Zhao, Huan ;
Prangnell, Philip B. ;
Gault, Baptiste ;
Raabe, Dierk ;
Shanthraj, Pratheek .
ACTA MATERIALIA, 2021, 214
[35]   Modeling Segregation of Fe-C Alloy in Solidification by Phase-Field Method Coupled with Thermodynamics [J].
Gong, Tong-Zhao ;
Chen, Yun ;
Hao, Wei-Ye ;
Chen, Xing-Qiu ;
Li, Dian-Zhong .
METALS, 2023, 13 (06)
[36]   Phase-Field Modeling of the Propagation of Electrical Trees in PP/POE Blends [J].
Xu, Hang ;
Yan, Qiuhong ;
Du, Boxue ;
Xing, Yunqi .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2024, 31 (03) :1250-1258
[37]   Study of the twinned dendrite tip shape I: Phase-field modeling [J].
Salgado-Ordorica, M. A. ;
Desbiolles, J. -L. ;
Rappaz, M. .
ACTA MATERIALIA, 2011, 59 (13) :5074-5084
[38]   An efficient grain remapping algorithm for phase-field modeling of dynamic recrystallization [J].
Zhang, Qi ;
Fang, Gang .
COMPUTATIONAL MATERIALS SCIENCE, 2022, 215
[39]   Phase-field Modeling of Phase Transformations in Multicomponent Alloys: A Review [J].
Arka Lahiri .
Journal of the Indian Institute of Science, 2022, 102 :39-57
[40]   Phase-Field Modeling of Grain-Boundary Grooving Under Electromigration [J].
Mukherjee, Arnab ;
Ankit, Kumar ;
Mukherjee, Rajdip ;
Nestler, Britta .
JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (12) :6233-6246