Gene Therapy for Hemophilia A: Where We Stand

被引:7
作者
Zhou, Miaojin [1 ,2 ]
Hu, Zhiqing [1 ,2 ]
Zhang, Chunhua [1 ,2 ]
Wu, Lingqian [1 ,2 ,3 ]
Li, Zhuo [1 ,2 ]
Liang, Desheng [1 ,2 ,3 ]
机构
[1] Cent South Univ, Ctr Med Genet, Changsha 410078, Hunan, Peoples R China
[2] Cent South Univ, Sch Life Sci, Hunan Key Lab Med Genet, Changsha 410078, Hunan, Peoples R China
[3] Hunan Jiahui Genet Hosp, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hemophilia A; gene therapy; BDD-F8; lentiviral; adeno-associated viral; nonviral; LONG-TERM CORRECTION; ADENOASSOCIATED VIRAL VECTORS; FACTOR-VIII EXPRESSION; VON-WILLEBRAND-FACTOR; LENTIVIRAL VECTORS; PLATELETS CORRECTS; CLOTTING FACTORS; FACTOR-IX; FVIII; MICE;
D O I
10.2174/1566523220666200806110849
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Hemophilia A (HA) is a hereditary hemorrhagic disease caused by a deficiency of coagulation factor VIII (FVIII) in blood plasma. Patients with HA usually suffer from spontaneous and recurrent bleeding in joints and muscles, or even intracerebral hemorrhage, which might lead to disability or death. Although the disease is currently manageable via delivery of plasma-derived or recombinant FVIII, this approach is costly, and neutralizing antibodies may be generated in a large portion of patients, which render the regimens ineffective and inaccessible. Given the monogenic nature of HA and that a slight increase in FVIII can remarkably alleviate the phenotypes, HA has been considered to be a suitable target disease for gene therapy. Consequently, the introduction of a functional F8 gene copy into the appropriate target cells via viral or nonviral delivery vectors, including gene correction through genome editing approaches, could ultimately provide an effective therapeutic method for HA patients. In this review, we discuss the recent progress of gene therapy for HA with viral and nonviral delivery vectors, including piggyBac, lentiviral and adeno-associated viral vectors, as well as new raising issues involving liver toxicity, pre-existing neutralizing antibodies of viral approach, and the selection of the target cell type for nonviral delivery.
引用
收藏
页码:142 / 151
页数:10
相关论文
共 110 条
[61]   Universal Correction of Blood Coagulation Factor VIII in Patient-Derived Induced Pluripotent Stem Cells Using CRISPR/Cas9 [J].
Park, Chul-Yong ;
Sung, Jin Jea ;
Cho, Sung-Rae ;
Kim, Jongwan ;
Kim, Dong-Wook .
STEM CELL REPORTS, 2019, 12 (06) :1242-1249
[62]   Functional Correction of Large Factor VIII Gene Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using CRISPR-Cas9 [J].
Park, Chul-Yong ;
Kim, Duk Hyoung ;
Son, Jeong Sang ;
Sung, Jin Jea ;
Lee, Jaehun ;
Bae, Sangsu ;
Kim, Jong-Hoon ;
Kim, Dong-Wook ;
Kim, Jin-Soo .
CELL STEM CELL, 2015, 17 (02) :213-220
[63]   Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs [J].
Park, Chul-Yong ;
Kim, Jungeun ;
Kweon, Jiyeon ;
Son, Jeong Sang ;
Lee, Jae Souk ;
Yoo, Jeong-Eun ;
Cho, Sung-Rae ;
Kim, Jong-Hoon ;
Kim, Jin-Soo ;
Kim, Dong-Wook .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (25) :9253-9258
[64]  
Pasi KJ, 2017, NEW ENGL J MED, V377, P819, DOI [10.1056/NEJMoa1616569, 10.1056/NEJMoa1708483]
[65]   Multiyear Follow-up of AAV5-hFVIII-SQ Gene Therapy for Hemophilia A [J].
Pasi, K. John ;
Rangarajan, Savita ;
Mitchell, Nina ;
Lester, Will ;
Symington, Emily ;
Madan, Bella ;
Laffan, Michael ;
Russell, Chris B. ;
Li, Mingjin ;
Pierce, Glenn F. ;
Wong, Wing Y. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (01) :29-40
[66]   Update on clinical gene therapy for hemophilia [J].
Perrin, George Q. ;
Herzog, Roland W. ;
Markusic, David M. .
BLOOD, 2019, 133 (05) :407-414
[67]   A Randomized Trial of Factor VIII and Neutralizing Antibodies in Hemophilia A [J].
Peyvandi, F. ;
Mannucci, P. M. ;
Garagiola, I. ;
El-Beshlawy, A. ;
Elalfy, M. ;
Ramanan, V. ;
Eshghi, P. ;
Hanagavadi, S. ;
Varadarajan, R. ;
Karimi, M. ;
Manglani, M. V. ;
Ross, C. ;
Young, G. ;
Seth, T. ;
Apte, S. ;
Nayak, D. M. ;
Santagostino, E. ;
Mancuso, M. E. ;
Sandoval Gonzalez, A. C. ;
Mahlangu, J. N. ;
Bonanad Boix, S. ;
Cerqueira, M. ;
Ewing, N. P. ;
Male, C. ;
Owaidah, T. ;
Soto Arellano, V. ;
Kobrinsky, N. L. ;
Majumdar, S. ;
Perez Garrido, R. ;
Sachdeva, A. ;
Simpson, M. ;
Thomas, M. ;
Zanon, E. ;
Antmen, B. ;
Kavakli, K. ;
Manco-Johnson, M. J. ;
Martinez, M. ;
Marzouka, E. ;
Mazzucconi, M. G. ;
Neme, D. ;
Palomo Bravo, A. ;
Paredes Aguilera, R. ;
Prezotti, A. ;
Schmitt, K. ;
Wicklund, B. M. ;
Zulfikar, B. ;
Rosendaal, F. R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 374 (21) :2054-2064
[68]   Gene therapy, bioengineered clotting factors and novel technologies for hemophilia treatment [J].
Pierce, G. F. ;
Lillicrap, D. ;
Pipe, S. W. ;
Vandendriessche, T. .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2007, 5 (05) :901-906
[69]   Progress in the molecular biology of inherited bleeding disorders [J].
Pipe, S. W. ;
High, K. A. ;
Ohashi, K. ;
Ural, A. U. ;
Lillicrap, D. .
HAEMOPHILIA, 2008, 14 :130-137
[70]   Human AlphoidtetO Artificial Chromosome as a Gene Therapy Vector for the Developing Hemophilia A Model in Mice [J].
Ponomartsev, Sergey V. ;
Sinenko, Sergey A. ;
Skvortsova, Elena V. ;
Liskovykh, Mikhail A. ;
Voropaev, Ivan N. ;
Savina, Maria M. ;
Kuzmin, Andrey A. ;
Kuzmina, Elena Yu. ;
Kondrashkina, Alexandra M. ;
Larionov, Vladimir ;
Kouprina, Natalay ;
Tomilin, Alexey N. .
CELLS, 2020, 9 (04)