An improved penalty method for power-law Stokes problems

被引:6
作者
Borggaard, Jeff [2 ]
Iliescu, Traian [2 ]
Roop, John Paul [1 ]
机构
[1] N Carolina Agr & Tech State Univ, Dept Math, Greensboro, NC 27411 USA
[2] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Penalty method; Power-law Stokes; Numerical analysis; Fluids; Large eddy simulation; Smagorinsky model;
D O I
10.1016/j.cam.2008.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the numerical approximation of fluid flow phenomena, it is often highly desirable to decouple the equations defining conservation of momentum and conservation of mass by using a penalty function method. The current penalty function methods for power-law Stokes fluids converge at a sublinear rate with respect to the penalty parameter. In this article, we show theoretically and numerically that a linear penalty function approximation to a power-law Stokes problem yields a higher-order accuracy over the known nonlinear penalty method. Theoretically, finite element approximation of the linear penalty function method is shown to satisfy an improved order of approximation with respect to the penalty parameter. The numerical experiments presented in the paper support the theoretical results and satisfy a linear order of approximation. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:646 / 658
页数:13
相关论文
共 32 条
[1]  
Adams R., 2003, Pure and Applied Mathematics, V140
[2]  
AMROUCHE C, 1994, CZECH MATH J, V44, P109
[3]   ERROR-ESTIMATES FOR A MIXED FINITE-ELEMENT METHOD FOR A NON-NEWTONIAN FLOW [J].
BARANGER, J ;
GEORGET, P ;
NAJIB, K .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1987, 23 :415-421
[4]   NUMERICAL-ANALYSIS OF QUASI-NEWTONIAN FLOW OBEYING THE POWER LOW OR THE CARREAU FLOW [J].
BARANGER, J ;
NAJIB, K .
NUMERISCHE MATHEMATIK, 1990, 58 (01) :35-49
[5]   FINITE-ELEMENT ERROR ANALYSIS OF A QUASI-NEWTONIAN FLOW OBEYING THE CARREAU OR POWER-LAW [J].
BARRETT, JW ;
LIU, WB .
NUMERISCHE MATHEMATIK, 1993, 64 (04) :433-453
[6]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[7]  
Berselli LC, 2006, SCI COMPUT, P1
[8]  
Brenner S. C., 2007, MATH THEORY FINITE E
[9]  
CAVELIER C, 1986, FINITE ELEMENT METHO