On the number of reliable finite-element eigenmodes

被引:1
作者
Givoli, Dan [1 ]
机构
[1] Technion Israel Inst Technol, Dept Aerosp Engn, IL-32000 Haifa, Israel
来源
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING | 2008年 / 24卷 / 12期
关键词
modes; eigenvalues; vibration; a priori error estimates; finite-element; large eigenvalues; high frequencies;
D O I
10.1002/cnm.1088
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The finite-element (FE) approximation of linear elliptic eigenvalue problems is considered. An analysis based oil a number of known estimates leads to the simple formula M=r(0)epsilon(d/(2p)) N relating the total number of degrees of freedom N, the maximum relative error level epsilon desired for the eigenvalues, and the number of 'reliable' modes M. (Here d is the spatial dimension and p is the polynomial degree of the FE space.) Moreover, a rough estimate for the numerical value of the constant r(0) for a given application is found. This result Supports a well-known rule of thumb. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:1967 / 1977
页数:11
相关论文
共 15 条
[1]  
[Anonymous], FINITE ELEMENT METHO
[2]  
Babuska I., 1991, Finite Element Methods, V2, P641
[3]  
Belytschko T., 1983, Computational methods for transient analysis, P1
[4]  
Cook R.D., 1989, CONCEPTS APPL FINITE, V3
[5]  
COURANT R, 1989, METHODS MATH PHYS, V1, pCH6
[6]   A UNIFORM STRAIN HEXAHEDRON AND QUADRILATERAL WITH ORTHOGONAL HOURGLASS CONTROL [J].
FLANAGAN, DP ;
BELYTSCHKO, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1981, 17 (05) :679-706
[7]  
HARARI I, 2006, 21 ISR S COMP MECH B
[8]  
Hughes T. J. R., 2012, The finite element method: linear static and dynamic finite element analysis
[9]   REDUCTION SCHEME FOR PROBLEMS OF STRUCTURAL DYNAMICS [J].
HUGHES, TJR ;
HILBER, HM ;
TAYLOR, RL .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1976, 12 (11) :749-767
[10]  
Irons B.M., 1974, P 3 C MATR METH STRU, P245