Alkaline polymer electrolyte membranes for fuel cell applications

被引:546
|
作者
Wang, Yan-Jie [1 ,2 ]
Qiao, Jinli [1 ]
Baker, Ryan [2 ]
Zhang, Jiujun [2 ,3 ]
机构
[1] Donghua Univ, Coll Environm Sci & Engn, Shanghai 201620, Peoples R China
[2] Natl Res Council Canada, NRC Energy Min & Environm Portfolio, Vancouver, BC V6T 1W5, Canada
[3] Donghua Univ, Res Inst, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
ANION-EXCHANGE MEMBRANES; QUATERNIZED POLY(VINYL ALCOHOL); CROSS-LINKING; TRANSPORT-PROPERTIES; OXYGEN REDUCTION; PERFORMANCE; HYDROXIDE; STABILITY; RADIATION; CHITOSAN;
D O I
10.1039/c3cs60053j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this review, we examine the most recent progress and research trends in the area of alkaline polymer electrolyte membrane (PEM) development in terms of material selection, synthesis, characterization, and theoretical approach, as well as their fabrication into alkaline PEM- based membrane electrode assemblies (MEAs) and the corresponding performance/durability in alkaline polymer electrolyte membrane fuel cells (PEMFCs). Respective advantages and challenges are also reviewed. To overcome challenges hindering alkaline PEM technology advancement and commercialization, several research directions are then proposed.
引用
收藏
页码:5768 / 5787
页数:20
相关论文
共 50 条
  • [31] Poly(p-phenylene)-based membranes with cerium for chemically durable polymer electrolyte fuel cell membranes
    Kodir, Abdul
    Woo, Seunghee
    Shin, Sang -Hun
    So, Soonyong
    Yu, Duk Man
    Lee, Hyejin
    Shin, Dongwon
    Lee, Jang Yong
    Park, Seok-Hee
    Bae, Byungchan
    HELIYON, 2024, 10 (04)
  • [32] New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells
    Merle, Geraldine
    Hosseiny, Seyed Schwan
    Wessling, Matthias
    Nijmeijer, Kitty
    JOURNAL OF MEMBRANE SCIENCE, 2012, 409 : 191 - 199
  • [33] Quinuclidinium-piperidinium based dual hydroxide anion exchange membranes as highly conductive and stable electrolyte materials for alkaline fuel cell applications
    Patil, Smitha S.
    Madhura, V
    Kammakakam, Irshad
    Swamy, M. H. Halashankar
    Patil, K. Sadashiva
    Lai, Zhiping
    Rao, H. N. Anil
    ELECTROCHIMICA ACTA, 2022, 426
  • [34] Critical Review on Composite-Based Polymer Electrolyte Membranes toward Fuel Cell Applications: Progress and Perspectives
    Wani, Ajaz Ahmad
    Shaari, Norazuwana
    Kamarudin, Siti Kartom
    Raduwan, Nor Fatina
    Yusoff, Yusra Nadzirah
    Khan, Amjad Mumtaz
    Yousuf, Shariq
    Ansari, M. N. M.
    ENERGY & FUELS, 2024, 38 (19) : 18169 - 18193
  • [35] Fabrication and properties of poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cell applications
    Zhong, Shuangling
    Cui, Xuejun
    Gao, Yushan
    Liu, Wencong
    Dou, Sen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (31) : 17857 - 17864
  • [36] Progress in Polymer Electrolyte Membrane Research for Fuel Cell Applications - The Issue of Water Management
    Odeh, Andrew O.
    Osifo, Peter O.
    Neomagus, Hein. J. P. W.
    2012 INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS (ICPES 2012), 2012, 13 : 15 - 22
  • [37] Electrode pore structure degradation in alkaline polymer electrolyte fuel cells
    Ma, Jun
    Meng, Dechao
    Zhang, Yixiao
    Ma, Hualong
    Ren, Zhouhong
    Zhang, Jingwen
    Xiao, Li
    Zhuang, Lin
    Li, Linsen
    Chen, Liwei
    JOURNAL OF POWER SOURCES, 2023, 587
  • [38] Alkaline polymer electrolyte fuel cells stably working at 80 °C
    Peng, Hanging
    Li, Qihao
    Hu, Meixue
    Xiao, Li
    Lu, Juntao
    Zhuang, Lin
    JOURNAL OF POWER SOURCES, 2018, 390 : 165 - 167
  • [39] Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress
    Tang DaoPing
    Pan Jing
    Lu ShanFu
    Zhuang Lin
    Lu JunTao
    SCIENCE CHINA-CHEMISTRY, 2010, 53 (02) : 357 - 364
  • [40] Alkaline polymer electrolyte fuel cell with Ni-based anode and Co-based cathode
    Hu, Qingping
    Li, Guangwei
    Pan, Jing
    Tan, Lisheng
    Lu, Juntao
    Zhuang, Lin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (36) : 16264 - 16268