Marginal Multi-Bernoulli Filters: RFS Derivation of MHT, JIPDA, and Association-Based MeMBer

被引:255
作者
Williams, Jason L. [1 ]
机构
[1] Def Sci & Technol Org, Natl Secur & ISR Div, Data & Informat Fus Grp, Edinburgh, SA 5111, Australia
关键词
PROBABILISTIC DATA ASSOCIATION; RANDOM FINITE SETS; MULTITARGET TRACKING; EFFICIENT; ALGORITHM; TARGETS; CLUTTER;
D O I
10.1109/TAES.2015.130550
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Recent developments in random finite sets (RFSs) have yielded a variety of tracking methods that avoid data association. This paper derives a form of the full Bayes RFS filter and observes that data association is implicitly present, in a data structure similar to multiple hypothesis tracking (MHT). Subsequently, algorithms are obtained by approximating the distribution of associations. Two algorithms result: one nearly identical to joint integrated probabilistic data association (JIPDA), and another related to the multiple target multi-Bernoulli (MeMBer) filter. Both improve performance in challenging environments.
引用
收藏
页码:1664 / 1687
页数:24
相关论文
共 45 条
[1]  
[Anonymous], LIBDAI 0 2 4 FREE OP
[2]  
[Anonymous], 2008, THESIS U W AUSTR CRA
[3]  
[Anonymous], 2004, Beyond the Kalman Filter: Particle Filters for Tracking Applications
[4]   Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Dinh Phung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) :6554-6567
[5]   Labeled Random Finite Sets and Multi-Object Conjugate Priors [J].
Ba-Tuong Vo ;
Ba-Ngu Vo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (13) :3460-3475
[6]  
Bar-Shalom Y, 1990, Multitarget-Multisensor Tracking: Advanced Applications, P43
[7]  
Blackman S., 1999, Design and Analysis of Modern Tracking Systems
[8]   Probabilistic data association avoiding track coalescence [J].
Blom, HAP ;
Bloem, EA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (02) :247-259
[9]  
Brekke E., 2014, P IEEE AER C BIG SKY
[10]  
Challa S., 2011, Fundamentals of object tracking