Marginal Multi-Bernoulli Filters: RFS Derivation of MHT, JIPDA, and Association-Based MeMBer

被引:240
作者
Williams, Jason L. [1 ]
机构
[1] Def Sci & Technol Org, Natl Secur & ISR Div, Data & Informat Fus Grp, Edinburgh, SA 5111, Australia
关键词
PROBABILISTIC DATA ASSOCIATION; RANDOM FINITE SETS; MULTITARGET TRACKING; EFFICIENT; ALGORITHM; TARGETS; CLUTTER;
D O I
10.1109/TAES.2015.130550
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Recent developments in random finite sets (RFSs) have yielded a variety of tracking methods that avoid data association. This paper derives a form of the full Bayes RFS filter and observes that data association is implicitly present, in a data structure similar to multiple hypothesis tracking (MHT). Subsequently, algorithms are obtained by approximating the distribution of associations. Two algorithms result: one nearly identical to joint integrated probabilistic data association (JIPDA), and another related to the multiple target multi-Bernoulli (MeMBer) filter. Both improve performance in challenging environments.
引用
收藏
页码:1664 / 1687
页数:24
相关论文
共 45 条
  • [1] [Anonymous], LIBDAI 0 2 4 FREE OP
  • [2] [Anonymous], 2008, THESIS U W AUSTR CRA
  • [3] [Anonymous], 2004, Beyond the Kalman Filter: Particle Filters for Tracking Applications
  • [4] Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter
    Ba-Ngu Vo
    Ba-Tuong Vo
    Dinh Phung
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) : 6554 - 6567
  • [5] Labeled Random Finite Sets and Multi-Object Conjugate Priors
    Ba-Tuong Vo
    Ba-Ngu Vo
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (13) : 3460 - 3475
  • [6] Bar-Shalom Y, 1990, Multitarget-Multisensor Tracking: Advanced Applications, P43
  • [7] Blackman S., 1999, Design and Analysis of Modern Tracking Systems
  • [8] Probabilistic data association avoiding track coalescence
    Blom, HAP
    Bloem, EA
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (02) : 247 - 259
  • [9] Brekke E., 2014, P IEEE AER C BIG SKY
  • [10] Challa S., 2011, Fundamentals of object tracking