Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors

被引:247
|
作者
Zou, Kaixiang [1 ]
Deng, Yuanfu [1 ,2 ]
Chen, Juping [1 ]
Qian, Yunqian [1 ]
Yang, Yuewang [3 ]
Li, Yingwei [1 ]
Chen, Guohua [4 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou, Guangdong, Peoples R China
[2] Key Lab Fuel Cell Technol Guangdong Prov, Guangzhou, Guangdong, Peoples R China
[3] Tianjin Univ, Sch Mat Sci & Technol, Tianjin 300072, Peoples R China
[4] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
关键词
Nitrogen-doped carbon; Hierarchically porous structure; Supercapcitors; Activation; Biomass waste; ELECTRODE MATERIAL; SUGARCANE BAGASSE; TEMPLATE APPROACH; ENERGY-STORAGE; PORE STRUCTURE; SURFACE-AREA; CAPACITANCE; BIOMASS; MICROSPHERES; NANOFIBERS;
D O I
10.1016/j.jpowsour.2017.12.081
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-doped carbon with an ultra-high specific surface area and a hierarchically interconnected porous structure is synthesized in large scale from a green route, that is, the activation of bagasse via a one-step method using KOH and urea. KOH and urea play a synergistic effect for the enhancement of the specific surface area and the modification of pore size of the as-prepared material. Benefiting from the multiple synergistic roles originated from an ultra-high specific area (2905.4 m(2) g(-1)), a high porous volume (2.05 mL g(-1) with 75.6 vol% micropores, which is an ideal proportion of micropores for obtaining high specific capacitance), a suitable nitrogen content (2.63 wt%), and partial graphitization, the hierarchically interconnected porous N-doped carbon exhibits an excellent electrochemical performance with a high specific capacitance (350.8, 301.9, and 259.5 F g(-1) at 1.0 A g(-1) in acidic, alkaline, and neutral electrolytes, respectively), superior rate capability and excellent cycling stability (almost no capacitance loss up to 5000 cycles). Furthermore, the symmetric device assembled by this material achieves high energy densities of 39.1 and 23.5 Wh kg(-1) at power densities of 1.0 and 20 kW kg(-1), respectively, and exhibits an excellent long-term cycling stability (with capacitance retention above 95.0% after 10 000 cycles).
引用
收藏
页码:579 / 588
页数:10
相关论文
共 50 条
  • [21] Graphene supported nitrogen-doped porous carbon nanosheets derived from zeolitic imidazolate framework for high performance supercapacitors
    Gan, Qingmeng
    Liu, Suqin
    Zhao, Kuangmin
    Wu, Yuanzhan
    He, Zhen
    Zhou, Zhi
    RSC ADVANCES, 2016, 6 (82): : 78947 - 78953
  • [22] Facile preparation of nitrogen-doped hierarchical porous carbon derived from lignin with KCl for supercapacitors
    Wang, Shuai
    Feng, Junfeng
    Pan, Hui
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 651
  • [23] Nitrogen Self-Doped Porous Carbon for High-Performance Supercapacitors
    Gong, Youning
    Li, Delong
    Fu, Qiang
    Zhang, Yupeng
    Pan, Chunxu
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (02) : 1585 - 1592
  • [24] Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors
    Gao, Feng
    Qu, Jiangying
    Zhao, Zongbin
    Wang, Zhiyu
    Qiu, Jieshan
    ELECTROCHIMICA ACTA, 2016, 190 : 1134 - 1141
  • [25] Template-free preparation of nitrogen-doped activated carbon with porous architecture for high-performance supercapacitors
    Xu, Zhenfu
    Chen, Jinglun
    Zhang, Xue
    Song, Qiang
    Wu, Jie
    Ding, Lei
    Zhang, Chunzhi
    Zhu, Huiling
    Cui, Hongzhi
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 276 : 280 - 291
  • [26] Preparation and optimization of nitrogen-doped porous carbon derived from bio-oil distillation residue for high-performance supercapacitors
    Li, Kai
    Nan, Dong-Hong
    Li, Zhu-Yu
    Xie, Jin-Heng
    Ma, Shan-Wei
    Huang, Yan-Qin
    Lu, Qiang
    JOURNAL OF ENERGY STORAGE, 2023, 57
  • [27] Activated nitrogen-doped porous carbon ensemble on montmorillonite for high-performance supercapacitors
    Zhang, Wenwen
    Ren, Zhenbo
    Ying, Zongrong
    Liu, Xindong
    Wan, Hui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 743 : 44 - 51
  • [28] Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors
    Mondal, Anjon Kumar
    Kretschmer, Katja
    Zhao, Yufei
    Liu, Hao
    Fan, Hongbo
    Wang, Guoxiu
    MICROPOROUS AND MESOPOROUS MATERIALS, 2017, 246 : 72 - 80
  • [29] Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors
    Han, Jinpeng
    Xu, Guiyin
    Ding, Bing
    Pan, Jin
    Dou, Hui
    MacFarlane, Douglas R.
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (15) : 5352 - 5357
  • [30] Nitrogen-doped hierarchical porous carbon for supercapacitors with high rate performance
    Wang, Le
    Zhu, Qizhen
    Zhao, Jiashun
    Guan, Yibiao
    Liu, Junjie
    An, Zhongxun
    Xu, Bin
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 279 : 439 - 445