Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors

被引:247
|
作者
Zou, Kaixiang [1 ]
Deng, Yuanfu [1 ,2 ]
Chen, Juping [1 ]
Qian, Yunqian [1 ]
Yang, Yuewang [3 ]
Li, Yingwei [1 ]
Chen, Guohua [4 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou, Guangdong, Peoples R China
[2] Key Lab Fuel Cell Technol Guangdong Prov, Guangzhou, Guangdong, Peoples R China
[3] Tianjin Univ, Sch Mat Sci & Technol, Tianjin 300072, Peoples R China
[4] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
关键词
Nitrogen-doped carbon; Hierarchically porous structure; Supercapcitors; Activation; Biomass waste; ELECTRODE MATERIAL; SUGARCANE BAGASSE; TEMPLATE APPROACH; ENERGY-STORAGE; PORE STRUCTURE; SURFACE-AREA; CAPACITANCE; BIOMASS; MICROSPHERES; NANOFIBERS;
D O I
10.1016/j.jpowsour.2017.12.081
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-doped carbon with an ultra-high specific surface area and a hierarchically interconnected porous structure is synthesized in large scale from a green route, that is, the activation of bagasse via a one-step method using KOH and urea. KOH and urea play a synergistic effect for the enhancement of the specific surface area and the modification of pore size of the as-prepared material. Benefiting from the multiple synergistic roles originated from an ultra-high specific area (2905.4 m(2) g(-1)), a high porous volume (2.05 mL g(-1) with 75.6 vol% micropores, which is an ideal proportion of micropores for obtaining high specific capacitance), a suitable nitrogen content (2.63 wt%), and partial graphitization, the hierarchically interconnected porous N-doped carbon exhibits an excellent electrochemical performance with a high specific capacitance (350.8, 301.9, and 259.5 F g(-1) at 1.0 A g(-1) in acidic, alkaline, and neutral electrolytes, respectively), superior rate capability and excellent cycling stability (almost no capacitance loss up to 5000 cycles). Furthermore, the symmetric device assembled by this material achieves high energy densities of 39.1 and 23.5 Wh kg(-1) at power densities of 1.0 and 20 kW kg(-1), respectively, and exhibits an excellent long-term cycling stability (with capacitance retention above 95.0% after 10 000 cycles).
引用
收藏
页码:579 / 588
页数:10
相关论文
共 50 条
  • [1] Cellulose-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitors
    Peng Song
    XiaoPing Shen
    XiaoMei He
    KaiHui Feng
    LiRong Kong
    ZhenYuan Ji
    LinZhi Zhai
    GuoXing Zhu
    DongYang Zhang
    Cellulose, 2019, 26 : 1195 - 1208
  • [2] Cellulose-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitors
    Song, Peng
    Shen, XiaoPing
    He, XiaoMei
    Feng, KaiHui
    Kong, LiRong
    Ji, ZhenYuan
    Zhai, LinZhi
    Zhu, GuoXing
    Zhang, DongYang
    CELLULOSE, 2019, 26 (02) : 1195 - 1208
  • [3] Nitrogen-doped hierarchically porous carbon nanosheets derived from polymerigraphene oxide hydrogels for high-performance supercapacitors
    Wang, Man
    Yang, Juan
    Liu, Siyu
    Li, Muzi
    Hu, Chao
    Qiu, Jieshan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 560 : 69 - 76
  • [4] Nitrogen-doped Porous Carbon Derived from Rapeseed residues for High-performance Supercapacitors
    Sun, Kanjun
    Guo, Dongyang
    Zheng, Xiaoping
    Zhu, Yanrong
    Zheng, Yanping
    Ma, Mingguang
    Zhao, Guohu
    Ma, Guofu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (06): : 4743 - 4754
  • [5] Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors
    Demir, Muslum
    Saraswat, Sushil Kumar
    Gupta, Ram B.
    RSC ADVANCES, 2017, 7 (67): : 42430 - 42442
  • [6] Nitrogen-Doped Hierarchical Porous Carbon Framework Derived from Waste Pig Nails for High-Performance Supercapacitors
    Zhou, Yibei
    Ren, Juan
    Xia, Li
    Wu, Huali
    Xie, Fengyu
    Zheng, Qiaoji
    Xu, Chenggang
    Lin, Dunmin
    CHEMELECTROCHEM, 2017, 4 (12): : 3181 - 3187
  • [7] Synthesis of Hierarchically Porous Nitrogen-Doped Carbon Nanosheets from Agaric for High-Performance Symmetric Supercapacitors
    An, Yufeng
    Li, Zhimin
    Yang, Yuying
    Guo, Bingshu
    Zhang, Ziyu
    Wu, Hongying
    Hu, Zhongai
    ADVANCED MATERIALS INTERFACES, 2017, 4 (12):
  • [8] Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor
    Ma, Guofu
    Yang, Qian
    Sun, Kanjun
    Peng, Hui
    Ran, Feitian
    Zhao, Xiaolong
    Lei, Ziqiang
    BIORESOURCE TECHNOLOGY, 2015, 197 : 137 - 142
  • [9] Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor
    Shang, Zhen
    An, Xingye
    Zhang, Hao
    Shen, Mengxia
    Baker, Fiona
    Liu, Yuxin
    Liu, Liqin
    Yang, Jian
    Cao, Haibing
    Xu, Qingliang
    Liu, Hongbin
    Ni, Yonghao
    CARBON, 2020, 161 : 62 - 70
  • [10] High-performance nitrogen-doped hierarchical porous carbon derived from cauliflower for advanced supercapacitors
    Men, Bao
    Guo, Pengkai
    Sun, Yanzhi
    Tang, Yang
    Chen, Yongmei
    Pan, Junqing
    Wan, Pingyu
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (03) : 2446 - 2457