Permutation polynomials and orthomorphism polynomials of degree six

被引:24
作者
Shallue, Christopher J. [1 ]
Wanless, Ian M. [1 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
Permutation polynomial; Orthomorphism polynomial; Degree six; Dickson; Normalised; FINITE-FIELD PERMUTE; ELEMENTS;
D O I
10.1016/j.ffa.2012.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A classic paper of Dickson gives a complete list of permutation polynomials of degree less than 6 over arbitrary finite fields, and degree 6 over finite fields of odd characteristic. However, some published statements have hinted that Dickson's classification might be incomplete in the degree 6 case. We uncover the reason for this confusion, and confirm the list of degree 6 permutation polynomials over all finite fields. Using this classification, we determine the complete list of degree 6 orthomorphism polynomials. Additionally, we note that a family of permutation polynomials from Dickson's list provides counterexamples to a published conjecture of Mullen. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:84 / 92
页数:9
相关论文
共 20 条
  • [1] Cohen S., 1995, Finite Fields Appl, V1, P372, DOI DOI 10.1006/FFTA.1995.1027
  • [2] Dickson LE, 1896, ANN MATH, V11, P65, DOI [DOI 10.2307/1967224, DOI 10.2307/1967217]
  • [3] Evans A. B., 1992, ORTHOMORPHISM GRAPHS, VVolume 1535
  • [4] Permutation polynomials of degree 6 or 7 over finite fields of characteristic 2
    Li, Jiyou
    Chandler, David B.
    Xiang, Qing
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2010, 16 (06) : 406 - 419
  • [5] WHEN DOES A POLYNOMIAL OVER A FINITE-FIELD PERMUTE THE ELEMENTS OF THE FIELD
    LIDL, R
    MULLEN, GL
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (03) : 243 - 246
  • [6] WHEN DOES A POLYNOMIAL OVER A FINITE-FIELD PERMUTE THE ELEMENTS OF THE FIELD .2.
    LIDL, R
    MULLEN, GL
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (01) : 71 - 74
  • [7] Lidl R., 1997, Finite Fields
  • [8] PERMUTATION BINOMIALS OVER FINITE FIELDS
    Masuda, Ariane M.
    Zieve, Michael E.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (08) : 4169 - 4180
  • [9] The number of transversals in a Latin square
    McKay, Brendan D.
    McLeod, Jeanette C.
    Wanless, Ian M.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2006, 40 (03) : 269 - 284
  • [10] Mullen G. L., 1993, Finite Fields, Coding Theory and Advances in Communications and Computing, P131