Facile fabrication of long-chain alkyl functionalized ultrafine reduced graphene oxide nanocomposites for enhanced tribological performance

被引:19
|
作者
Zhu, Chao [1 ]
Yan, Yehai [1 ]
Wang, Fan [1 ]
Cui, Jian [1 ]
Zhao, Shuai [1 ]
Gao, Ailin [1 ]
Zhang, Guangfa [1 ]
机构
[1] Qingdao Univ Sci & Technol, Key Lab Rubber Plast, Minist Educ, Shandong Prov Key Lab Rubber Plast,Sch Polymer Sc, Qingdao 266042, Shandong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
FRICTION; WEAR; OIL; NANOSHEETS; NANOFLUIDS; ADDITIVES; GRAPHITE; CONTACT; GREEN;
D O I
10.1039/c9ra00433e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to their ultrathin 2D laminated structure as well as excellent mechanical and thermal stabilities, ultrafine graphene-based nanoparticles exhibit fascinating advantages as highly-efficient lubricant additives. However, it remains a daunting challenge to achieve good and durable dispersion of these graphene-based nanoparticles in lubricating oils. Herein, we report a facile and efficient integration strategy involving particle size miniaturization, surface grafting with octadecyl alcohol (OA), and partial chemical reduction to prepare a novel long-chain alkyl functionalized ultrafine reduced graphene oxide (RGO-g-OA) with highly-dispersive capacity and superior tribological performance. The chemical composition and structural characteristics, microstructural morphology, and particle size distribution of RGO-g-OA were systematically investigated. Combining significantly improved lipophilicity derived from the long-chain alkyl grafting and partial chemical reduction with the small-size effect gave rise to outstanding long-term dispersion stability (as long as one month) of RGO-g-OA in the finished oil. Moreover, the friction coefficient and wear volume of finished oil with merely 0.005wt% RGO-g-OA greatly reduced to 0.065 and 10316 m(3), decreased by 9.7% and 44%, respectively, compared to those of pristine finished oil, demonstrating remarkable friction reduction and anti-wear performances. Consequently, owing to the characteristics of facile fabrication, durable dispersion stability, and superior tribological performance at an extremely low content, this novel nanoadditive shows a promising application potential in the tribology field.
引用
收藏
页码:7324 / 7333
页数:10
相关论文
共 42 条
  • [41] Reduced graphene oxide-wrapped pyrite as anode materials for Li-ion batteries with enhanced long-term performance under harsh operational environments
    Du, Yao
    Wu, Songping
    Huang, Mingbao
    Tian, Xiaodong
    CHEMICAL ENGINEERING JOURNAL, 2017, 326 : 257 - 264
  • [42] MnCO3/Mn3O4/reduced graphene oxide ternary anode materials for lithium-ion batteries: facile green synthesis and enhanced electrochemical performance
    Zhang, Rui
    Wang, Dong
    Qin, Lu-Chang
    Wen, Guangwu
    Pan, Hong
    Zhang, Yingfei
    Tian, Nan
    Zhou, Yu
    Huang, Xiaoxiao
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (32) : 17001 - 17011