A note on time-reversibility of multivariate linear processes

被引:22
作者
Chan, KS [1 ]
Ho, LH
Tong, H
机构
[1] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[2] Wichita State Univ, Dept Math & Stat, Wichita, KS 67260 USA
[3] London Sch Econ, Dept Stat, London WC2A 2AE, England
关键词
cumulant; distributional equivalence; non-Gaussian distribution; T-distribution; time series; symmetry;
D O I
10.1093/biomet/93.1.221
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We derive some readily verifiable necessary and sufficient conditions for a multivariate non-Gaussian linear process to be time-reversible, under two sets of conditions on the contemporaneous dependence structure of the innovations. One set of conditions concerns the case of independent-component innovations, in which case a multivariate non-Gaussian linear process is time-reversible if and only if the coefficients consist of essentially asymmetric columns with column-specific origins of symmetry or symmetric pairs of columns with pair-specific origins of symmetry. On the other hand, for dependent-component innovations plus other regularity conditions, a multivariate non-Gaussian linear process is time-reversible if and only if the coefficients are essentially symmetric about some origin.
引用
收藏
页码:221 / 227
页数:7
相关论文
共 13 条
[1]  
[Anonymous], 2000, GAUSSIAN NONGAUSSIAN
[2]  
Breidt FJ, 1992, J TIME SER ANAL, V13, P377, DOI [DOI 10.1111/J.1467-9892.1992.TB00114.X, 10.1111/j.1467-9892.1992.tb00114.x]
[3]  
Chan KS, 2002, BERNOULLI, V8, P117
[4]   ON THE UNIQUE REPRESENTATION OF NON-GAUSSIAN LINEAR-PROCESSES [J].
CHENG, QS .
ANNALS OF STATISTICS, 1992, 20 (02) :1143-1145
[5]   On time-reversibility of linear processes [J].
Cheng, QS .
BIOMETRIKA, 1999, 86 (02) :483-486
[6]   REVERSIBILITY AS A CRITERION FOR DISCRIMINATING TIME-SERIES [J].
DIKS, C ;
VANHOUWELINGEN, JC ;
TAKENS, F ;
DEGOEDE, J .
PHYSICS LETTERS A, 1995, 201 (2-3) :221-228
[7]  
FINDLEY DF, 1990, BIOMETRIKA, V77, P235
[8]  
FINDLEY DF, 1986, BIOMETRIKA, V73, P520
[9]  
Herstein I. N., 1996, Abstract algebra, V3rd ed.
[10]  
Keilson J, 1979, Markov Chain Models-Rarity and Exponentiality