LiNi0.5Mn1.5O4 microrod with ultrahigh Mn3+ content: A high performance cathode material for lithium ion battery

被引:37
作者
Li, Lang [1 ]
Sui, Jinsong [1 ]
Chen, Jian [1 ]
Lu, Yangcheng [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, State Key Lab Chem Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultralong LiNi0.5Mn1.5O4 microrod; Cathode material; Lithium ion battery; Ultrahigh Mn3+ content; Excessive capacity; HIGH-VOLTAGE CATHODE; ELECTROCHEMICAL PROPERTIES; POSITIVE ELECTRODE; SPINEL; CAPACITY; LIMN2O4; LIMN1.5NI0.5O4; DEPENDENCE; DENSITY; SURFACE;
D O I
10.1016/j.electacta.2019.03.086
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, we successfully use ultralong gamma-MnOOH microrods to synthesize ultralong spinel LiNi0.5Mn1.5O4 microrods through high temperature solid state reaction, which allows to drastically increase the content of residual Mn3+ ions (up to 61.3%) along with oxygen deficiency (up to 0.44) in spinel structure and improves the rate, cycling and discharge capacity of LiNi0.5Mn1.5O4 materials significantly. The excessive theoretical capacity (185 mAhg(-1)) is even observed at low charge and discharge rate due to the additional enhanced contribution of the Mn3+/Mn4+ redox couples. The LNMO-800 shows a little capacity decay with the increasing of the rate from 0.5 C to 1 C and 2 C, the discharge capacities were 145 mAhg(-1), 144.6 mAhg(-1) and 142 mAhg(-1), respectively. Even at a high rate of 10 C, it still deliveres a capacity of 125.3 mAhg(-1). After 1000 cycles at 1 C, the discharge capacity can still reach 120 mAhg(-1), corresponding to a capacity retention of 82.3%. The high temperature (55 degrees C) tests also demonstrate its excellent structural stability. The LiNi0.5Mn1.5O4 microrod with ultrahigh Mn3+ content should be a promising choice for future high energy power applications. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:433 / 442
页数:10
相关论文
共 47 条
[1]   Part-II: Exchange current density and ionic diffusivity studies on the ordered and disordered spinel LiNi0.5Mn1.5O4 cathode [J].
Amin, Ruhul ;
Belharouak, Ilias .
JOURNAL OF POWER SOURCES, 2017, 348 :318-325
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte [J].
Armstrong, Graham ;
Armstrong, A. Robert ;
Bruce, Peter G. ;
Reale, Priscilla ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2006, 18 (19) :2597-+
[4]   Expanding the rate capabilities of the LiNi0.5Mn1.5O4 spinel by exploiting the synergistic effect between nano and microparticles [J].
Arrebola, JC ;
Caballero, A ;
Hernán, L ;
Morales, J .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (12) :A641-A645
[5]   Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinet via polymer-assisted synthesis:: A method for improving its rate capability and performance in 5 V lithium batteries [J].
Arrebola, Jose C. ;
Caballero, Alvaro ;
Cruz, Manuel ;
Hernan, Lourdes ;
Morales, Julian ;
Castellon, Enrique Rodriguez .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (14) :1904-1912
[6]   Insights about the irreversible capacity of LiNi0.5Mn1.5O4 cathode materials in lithium batteries [J].
Brutti, Sergio ;
Greco, Giorgia ;
Reale, Priscilla ;
Panero, Stefania .
ELECTROCHIMICA ACTA, 2013, 106 :483-493
[7]   Impact of High Valence State Cation Ti/Ta Surface Doping on the Stabilization of Spinel LiNi0.5Mn1.5O4 Cathode Materials: A Systematic Density Functional Theory Investigation [J].
Chen, Yuyang ;
Ben, Liubin ;
Chen, Bin ;
Zhao, Wenwu ;
Huang, Xuejie .
ADVANCED MATERIALS INTERFACES, 2018, 5 (12)
[8]   Polyhedral ordered LiNi0.5Mn1.5O4 spinel with excellent electrochemical properties in extreme conditions [J].
Chen, Zhanjun ;
Zhao, Ruirui ;
Li, Aiju ;
Hu, Hang ;
Liang, Gaoqin ;
Lan, Weijie ;
Cao, Zhifeng ;
Chen, Hongyu .
JOURNAL OF POWER SOURCES, 2015, 274 :265-273
[9]   Li3PO4-Coated LiNi0.5Mn1.5O4: A Stable High-Voltage Cathode Material for Lithium-Ion Batteries [J].
Chong, Jin ;
Xun, Shidi ;
Zhang, Jingping ;
Song, Xiangyun ;
Xie, Haiming ;
Battaglia, Vincent ;
Wang, Rongshun .
CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (24) :7479-7485
[10]   Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life [J].
Fang, Xin ;
Ge, Mingyuan ;
Rong, Jiepeng ;
Zhou, Chongwu .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (12) :4083-4088