IMPLICIT-EXPLICIT TIMESTEPPING WITH FINITE ELEMENT APPROXIMATION OF REACTION-DIFFUSION SYSTEMS ON EVOLVING DOMAINS

被引:36
作者
Lakkis, Omar [1 ]
Madzvamuse, Anotida [1 ]
Venkataraman, Chandrasekhar [1 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9QH, E Sussex, England
基金
英国工程与自然科学研究理事会;
关键词
evolving domain; implicit-explicit scheme; finite element method; convergence rate; Eulerian scheme; Lagrangian scheme; DIFFERENCE METHODS; STABILITY; PATTERN; CONVERGENCE; EQUATIONS;
D O I
10.1137/120880112
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze an implicit-explicit timestepping procedure with finite element spatial approximation for semilinear reaction-diffusion systems on evolving domains arising from biological models, such as Schnakenberg's (1979). We employ a Lagrangian formulation of the model equations which permits the error analysis for parabolic equations on a fixed domain but introduces technical difficulties, foremost the space-time dependent conductivity and diffusion. We prove optimal-order error estimates in the L-infinity(0, T; L-2(Omega)) and L-2(0, T; H-1(Omega)) norms, and a pointwise stability result. We remark that these apply to Eulerian solutions. Details on the implementation of the Lagrangian and the Eulerian scheme are provided. We also report on a numerical experiment for an application to pattern formation on an evolving domain.
引用
收藏
页码:2309 / 2330
页数:22
相关论文
共 48 条
[1]  
Acheson D. J., 1990, ELEMENTARY FLUID DYN, DOI [10.1121/1.400751, DOI 10.1121/1.400751]
[2]  
[Anonymous], 2008, PREPRINT
[3]  
[Anonymous], 2002, MATH THEORY FINITE E, DOI DOI 10.1007/978-1-4757-3658-8
[4]  
[Anonymous], NUMERICAL MATH ADV A
[5]  
[Anonymous], 2006, SPRINGER SER COMPUT
[6]  
[Anonymous], DESIGN OF ADAPTIVE F
[7]  
[Anonymous], 2004, THE PARAVIEW GUIDE
[8]  
[Anonymous], LECT NOTES
[9]  
[Anonymous], JOURNAL MATH BIOL
[10]  
[Anonymous], ESTIMATING THE ERROR