Study of a Second-Order Nonlinear Elliptic Problem Generated by a Divergence Type Operator on a Compact Riemannian Manifold

被引:1
作者
Abnoune, A. [1 ]
Azroul, E. [1 ]
Abbassi, M. T. K. [2 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Lab Math Anal & Applicat, Fes, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Lab Math ALgebra & Geometry, Lab Math, Fes, Morocco
关键词
Riemannian manifold; Covariant derivative; Operator of divergence type (or type leray-Lion);
D O I
10.2298/FIL1814811A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will study a second-order nonlinear elliptic problem generated by an operator of divergence type (or type leray-Lion) : (P1){A(u) = f in M u = 0 on Gamma (1) on (M, g) a compact Riemannian manifold et Gamma its border.
引用
收藏
页码:4811 / 4820
页数:10
相关论文
共 19 条
[1]  
[Anonymous], 1969, Quelques methodes de resolution des problemes aux limites non lineaires
[2]  
[Anonymous], 2000, Courant Lecture Notes
[3]  
[Anonymous], 1965, ANN MATH STUD
[4]  
Aubin T., 1976, J. Differential Geom, V11, P573, DOI DOI 10.4310/JDG/1214433725
[5]  
Aubin T., 1982, Monge-Ampere Equations, V252
[6]  
Benalili M., 2013, J DIFFER EQUATIONS, V254
[7]  
Benalili M., 2009, DYN PDE, V6
[8]  
Benalili M., 2003, ELECT J DIFERENTIAL, V106
[9]  
Benalili M, 2013, ELECTRON J DIFFER EQ
[10]   Existence and multiplicity of solutions to fourth order elliptic equations with critical exponent on compact manifolds [J].
Benalili, Mohammed .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (04) :607-622