Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms

被引:192
作者
Foxen, B. [1 ,2 ]
Neill, C. [2 ]
Dunsworth, A. [2 ]
Roushan, P. [2 ]
Chiaro, B. [1 ]
Megrant, A. [2 ]
Kelly, J. [2 ]
Chen, Zijun [2 ]
Satzinger, K. [2 ]
Barends, R. [2 ]
Arute, F. [2 ]
Arya, K. [2 ]
Babbush, R. [2 ]
Bacon, D. [2 ]
Bardin, J. C. [2 ,3 ]
Boixo, S. [2 ]
Buell, D. [2 ]
Burkett, B. [2 ]
Chen, Yu [2 ]
Collins, R. [2 ]
Farhi, E. [2 ]
Fowler, A. [2 ]
Gidney, C. [2 ]
Giustina, M. [2 ]
Graff, R. [2 ]
Harrigan, M. [2 ]
Huang, T. [2 ]
Isakov, S., V [2 ]
Jeffrey, E. [2 ]
Jiang, Z. [2 ]
Kafri, D. [2 ]
Kechedzhi, K. [2 ]
Klimov, P. [2 ]
Korotkov, A. [2 ]
Kostritsa, F. [2 ]
Landhuis, D. [2 ]
Lucero, E. [2 ]
McClean, J. [2 ]
McEwen, M. [1 ]
Mi, X. [2 ]
Mohseni, M. [2 ]
Mutus, J. Y. [2 ]
Naaman, O. [2 ]
Neeley, M. [2 ]
Niu, M. [2 ]
Petukhov, A. [2 ]
Quintana, C. [2 ]
Rubin, N. [2 ]
Sank, D. [2 ]
Smelyanskiy, V [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Google Res, Santa Barbara, CA 93117 USA
[3] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
关键词
SUPREMACY;
D O I
10.1103/PhysRevLett.125.120504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum algorithms offer a dramatic speedup for computational problems in material science and chemistry. However, any near-term realizations of these algorithms will need to be optimized to fit within the finite resources offered by existing noisy hardware. Here, taking advantage of the adjustable coupling of gmon qubits, we demonstrate a continuous two-qubit gate set that can provide a threefold reduction in circuit depth as compared to a standard decomposition. We implement two gate families: an imaginary swap-like (iSWAP-like) gate to attain an arbitrary swap angle, theta, and a controlled-phase gate that generates an arbitrary conditional phase, phi. Using one of each of these gates, we can perform an arbitrary two-qubit gate within the excitation-preserving subspace allowing for a complete implementation of the so-called Fermionic simulation (fSim) gate set. We benchmark the fidelity of the iSWAP-like and controlled-phase gate families as well as 525 other 'Sim gates spread evenly across the entire tSim(theta, phi) parameter space, achieving a purity-limited average two-qubit Pauli error of 3.8 x 10(-3) per fSim gate.
引用
收藏
页数:6
相关论文
共 31 条
[11]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[12]   Surface codes: Towards practical large-scale quantum computation [J].
Fowler, Austin G. ;
Mariantoni, Matteo ;
Martinis, John M. ;
Cleland, Andrew N. .
PHYSICAL REVIEW A, 2012, 86 (03)
[13]   High speed flux sampling for tunable superconducting qubits with an embedded cryogenic transducer [J].
Foxen, B. ;
Mutus, J. Y. ;
Lucero, E. ;
Jeffrey, E. ;
Sank, D. ;
Barends, R. ;
Arya, K. ;
Burkett, B. ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, B. ;
Dunsworth, A. ;
Fowler, A. ;
Gidney, C. ;
Giustina, M. ;
Graff, R. ;
Huang, T. ;
Kelly, J. ;
Klimov, P. ;
Megrant, A. ;
Naaman, O. ;
Neeley, M. ;
Neill, C. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Martinis, John M. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2019, 32 (01)
[14]   Fast Accurate State Measurement with Superconducting Qubits [J].
Jeffrey, Evan ;
Sank, Daniel ;
Mutus, J. Y. ;
White, T. C. ;
Kelly, J. ;
Barends, R. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Megrant, A. ;
O'Malley, P. J. J. ;
Neill, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2014, 112 (19)
[15]   Error mitigation extends the computational reach of a noisy quantum processor [J].
Kandala, Abhinav ;
Temme, Kristan ;
Corcoles, Antonio D. ;
Mezzacapo, Antonio ;
Chow, Jerry M. ;
Gambetta, Jay M. .
NATURE, 2019, 567 (7749) :491-+
[16]   Cartan decomposition of SU(2n) and control of spin systems [J].
Khaneja, N ;
Glaser, SJ .
CHEMICAL PHYSICS, 2001, 267 (1-3) :11-23
[17]   Quantum Simulation of Electronic Structure with Linear Depth and Connectivity [J].
Kivlichan, Ian D. ;
McClean, Jarrod ;
Wiebe, Nathan ;
Gidney, Craig ;
Aspuru-Guzik, Alan ;
Chan, Garnet Kin-Lic ;
Babbush, Ryan .
PHYSICAL REVIEW LETTERS, 2018, 120 (11)
[18]   Fluctuations of Energy-Relaxation Times in Superconducting Qubits [J].
Klimov, P. V. ;
Kelly, J. ;
Chen, Z. ;
Neeley, M. ;
Megrant, A. ;
Burkett, B. ;
Barends, R. ;
Arya, K. ;
Chiaro, B. ;
Chen, Yu ;
Dunsworth, A. ;
Fowler, A. ;
Foxen, B. ;
Gidney, C. ;
Giustina, M. ;
Graff, R. ;
Huang, T. ;
Jeffrey, E. ;
Lucero, Erik ;
Mutus, J. Y. ;
Naaman, O. ;
Neill, C. ;
Quintana, C. ;
Roushan, P. ;
Sank, Daniel ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Boixo, S. ;
Babbush, R. ;
Smelyanskiy, V. N. ;
Neven, H. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2018, 121 (09)
[19]   Charge-insensitive qubit design derived from the Cooper pair box [J].
Koch, Jens ;
Yu, Terri M. ;
Gambetta, Jay ;
Houck, A. A. ;
Schuster, D. I. ;
Majer, J. ;
Blais, Alexandre ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 76 (04)
[20]   Losses in coplanar waveguide resonators at millikelvin temperatures [J].
Macha, P. ;
van der Ploeg, S. H. W. ;
Oelsner, G. ;
Il'ichev, E. ;
Meyer, H. -G. ;
Wuensch, S. ;
Siegel, M. .
APPLIED PHYSICS LETTERS, 2010, 96 (06)