Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms

被引:192
作者
Foxen, B. [1 ,2 ]
Neill, C. [2 ]
Dunsworth, A. [2 ]
Roushan, P. [2 ]
Chiaro, B. [1 ]
Megrant, A. [2 ]
Kelly, J. [2 ]
Chen, Zijun [2 ]
Satzinger, K. [2 ]
Barends, R. [2 ]
Arute, F. [2 ]
Arya, K. [2 ]
Babbush, R. [2 ]
Bacon, D. [2 ]
Bardin, J. C. [2 ,3 ]
Boixo, S. [2 ]
Buell, D. [2 ]
Burkett, B. [2 ]
Chen, Yu [2 ]
Collins, R. [2 ]
Farhi, E. [2 ]
Fowler, A. [2 ]
Gidney, C. [2 ]
Giustina, M. [2 ]
Graff, R. [2 ]
Harrigan, M. [2 ]
Huang, T. [2 ]
Isakov, S., V [2 ]
Jeffrey, E. [2 ]
Jiang, Z. [2 ]
Kafri, D. [2 ]
Kechedzhi, K. [2 ]
Klimov, P. [2 ]
Korotkov, A. [2 ]
Kostritsa, F. [2 ]
Landhuis, D. [2 ]
Lucero, E. [2 ]
McClean, J. [2 ]
McEwen, M. [1 ]
Mi, X. [2 ]
Mohseni, M. [2 ]
Mutus, J. Y. [2 ]
Naaman, O. [2 ]
Neeley, M. [2 ]
Niu, M. [2 ]
Petukhov, A. [2 ]
Quintana, C. [2 ]
Rubin, N. [2 ]
Sank, D. [2 ]
Smelyanskiy, V [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Google Res, Santa Barbara, CA 93117 USA
[3] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
关键词
SUPREMACY;
D O I
10.1103/PhysRevLett.125.120504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum algorithms offer a dramatic speedup for computational problems in material science and chemistry. However, any near-term realizations of these algorithms will need to be optimized to fit within the finite resources offered by existing noisy hardware. Here, taking advantage of the adjustable coupling of gmon qubits, we demonstrate a continuous two-qubit gate set that can provide a threefold reduction in circuit depth as compared to a standard decomposition. We implement two gate families: an imaginary swap-like (iSWAP-like) gate to attain an arbitrary swap angle, theta, and a controlled-phase gate that generates an arbitrary conditional phase, phi. Using one of each of these gates, we can perform an arbitrary two-qubit gate within the excitation-preserving subspace allowing for a complete implementation of the so-called Fermionic simulation (fSim) gate set. We benchmark the fidelity of the iSWAP-like and controlled-phase gate families as well as 525 other 'Sim gates spread evenly across the entire tSim(theta, phi) parameter space, achieving a purity-limited average two-qubit Pauli error of 3.8 x 10(-3) per fSim gate.
引用
收藏
页数:6
相关论文
共 31 条
[1]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[2]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[3]   Diabatic Gates for Frequency-Tunable Superconducting Qubits [J].
Barends, R. ;
Quintana, C. M. ;
Petukhov, A. G. ;
Chen, Yu ;
Kafri, D. ;
Kechedzhi, K. ;
Collins, R. ;
Naaman, O. ;
Boixo, S. ;
Arute, F. ;
Arya, K. ;
Buell, D. ;
Burkett, B. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Foxen, B. ;
Fowler, A. ;
Gidney, C. ;
Giustina, M. ;
Graff, R. ;
Huang, T. ;
Jeffrey, E. ;
Kelly, J. ;
Klimov, P. V. ;
Kostritsa, F. ;
Landhuis, D. ;
Lucero, E. ;
McEwen, M. ;
Megrant, A. ;
Mi, X. ;
Mutus, J. ;
Neeley, M. ;
Neill, C. ;
Ostby, E. ;
Roushan, P. ;
Sank, D. ;
Satzinger, K. J. ;
Vainsencher, A. ;
White, T. ;
Yao, J. ;
Yeh, P. ;
Zalcman, A. ;
Neven, H. ;
Smelyanskiy, V. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2019, 123 (21)
[4]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[5]   Characterizing quantum supremacy in near-term devices [J].
Boixo, Sergio ;
Isakov, Sergei, V ;
Smelyanskiy, Vadim N. ;
Babbush, Ryan ;
Ding, Nan ;
Jiang, Zhang ;
Bremner, Michael J. ;
Martinis, John M. ;
Neven, Hartmut .
NATURE PHYSICS, 2018, 14 (06) :595-600
[6]   Qubit Architecture with High Coherence and Fast Tunable Coupling [J].
Chen, Yu ;
Neill, C. ;
Roushan, P. ;
Leung, N. ;
Fang, M. ;
Barends, R. ;
Kelly, J. ;
Campbell, B. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Jeffrey, E. ;
Megrant, A. ;
Mutus, J. Y. ;
O'Malley, P. J. J. ;
Quintana, C. M. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Geller, Michael R. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (22)
[7]   Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit [J].
Chen, Zijun ;
Kelly, Julian ;
Quintana, Chris ;
Barends, R. ;
Campbell, B. ;
Chen, Yu ;
Chiaro, B. ;
Dunsworth, A. ;
Fowler, A. G. ;
Lucero, E. ;
Jeffrey, E. ;
Megrant, A. ;
Mutus, J. ;
Neeley, M. ;
Neill, C. ;
O'Malley, P. J. J. ;
Roushan, P. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Korotkov, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2016, 116 (02)
[8]   Programming languages and compiler design for realistic quantum hardware [J].
Chong, Frederic T. ;
Franklin, Diana ;
Martonosi, Margaret .
NATURE, 2017, 549 (7671) :180-187
[9]   Process verification of two-qubit quantum gates by randomized benchmarking [J].
Corcoles, A. D. ;
Gambetta, Jay M. ;
Chow, Jerry M. ;
Smolin, John A. ;
Ware, Matthew ;
Strand, Joel ;
Plourde, B. L. T. ;
Steffen, M. .
PHYSICAL REVIEW A, 2013, 87 (03)
[10]  
Farhi E., ARXIV160207674