Key Roles of the Downstream Mobile Jaw of Escherichia coli RNA Polymerase in Transcription Initiation

被引:19
|
作者
Drennan, Amanda [1 ]
Kraemer, Mark [1 ]
Capp, Michael [1 ]
Gries, Theodore [1 ]
Ruff, Emily [2 ]
Sheppard, Carol [3 ,4 ]
Wigneshweraraj, Sivaramesh [3 ,4 ]
Artsimovitch, Irina [5 ,6 ]
Record, M. Thomas, Jr. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Microbiol, London SW7 2AZ, England
[4] Univ London Imperial Coll Sci Technol & Med, Ctr Mol Microbiol & Infect, London SW7 2AZ, England
[5] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA
[6] Ohio State Univ, Ctr RNA Biol, Columbus, OH 43210 USA
基金
英国惠康基金; 美国国家科学基金会; 英国生物技术与生命科学研究理事会;
关键词
LAMBDA-P-R; OPEN COMPLEX-FORMATION; PROMOTER OPEN COMPLEXES; CONFORMATIONAL-CHANGES; START SITE; STRUCTURAL BASIS; UPSTREAM DNA; T7; GP2; MECHANISM; PROTEIN;
D O I
10.1021/bi301260u
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Differences in kinetics of transcription initiation by RNA polymerase (RNAP) at different promoters tailor the pattern of gene expression to cellular needs. After initial binding, large conformational changes occur in promoter DNA and RNAP to form initiation-capable complexes. To understand the mechanism and regulation of transcription initiation, the nature and sequence of these conformational changes must be determined. Escherichia coli RNAP uses binding free energy to unwind and separate 13 base pairs of lambda P-R promoter DNA to form the unstable open intermediate 12, which rapidly converts to much more stable open complexes (I-3, RPo). Conversion of I-2 to RPo involves folding/assembly of several mobile RNAP domains on, downstream duplex DNA. Here, we investigate effects of a 42 residue deletion in the mobile beta' jaw (Delta JAW) and truncation of promoter DNA beyond +12 (DT+12) on the steps of initiation We find that in stable Delta JAW open complexes the downstream boundary of hydroxyl radical protection shortens by 5-10 base pairs, as compared to wild type (WT) complexes. Dissociation kinetics of open complexes formed with Delta JAW RNAP and/or DT+12 DNA resemble those deduced for the structurally uncharacterized intermediate I-3. Overall rate constants (I-3) for promoter binding and DNA opening by Delta JAW RNAP are much smaller than for WT RNAP. Values of k(a), for WT RNAP with DT+12 and full-length lambda P-R are similar, though contributions of binding and isomerization steps differ. Hence, the jaw plays major roles both early and late in RPo formation, while downstream DNA functions primarily as the assembly platform after DNA opening.
引用
收藏
页码:9447 / 9459
页数:13
相关论文
共 50 条
  • [21] Mechanism of transcription initiation by the yeast mitochondrial RNA polymerase
    Deshpande, Aishwarya P.
    Patel, Smita S.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (9-10): : 930 - 938
  • [22] Roles of zinc-binding domain of bacterial RNA polymerase in transcription
    Hu, Yangbo
    Liu, Bin
    TRENDS IN BIOCHEMICAL SCIENCES, 2022, 47 (08) : 710 - 724
  • [23] Mechanism of Bacterial Transcription Initiation: RNA Polymerase - Promoter Binding, Isomerization to Initiation-Competent Open Complexes, and Initiation of RNA Synthesis
    Saecker, Ruth M.
    Record, M. Thomas
    deHaseth, Pieter L.
    JOURNAL OF MOLECULAR BIOLOGY, 2011, 412 (05) : 754 - 771
  • [24] Transcription Start Site Scanning and the Requirement for ATP during Transcription Initiation by RNA Polymerase II
    Fishburn, James
    Galburt, Eric
    Hahn, Steven
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (25) : 13040 - 13047
  • [25] A novel intermediate in transcription initiation by human mitochondrial RNA polymerase
    Morozov, Yaroslav I.
    Agaronyan, Karen
    Cheung, Alan C. M.
    Anikin, Michael
    Cramer, Patrick
    Temiakov, Dmitry
    NUCLEIC ACIDS RESEARCH, 2014, 42 (06) : 3884 - 3893
  • [26] Structural insights into transcription initiation by yeast RNA polymerase I
    Sadian, Yashar
    Tafur, Lucas
    Kosinski, Jan
    Jakobi, Arjen J.
    Wetzel, Rene
    Buczak, Katarzyna
    Hagen, Wim J. H.
    Beck, Martin
    Sachse, Carsten
    Mueller, Christoph W.
    EMBO JOURNAL, 2017, 36 (18) : 2698 - 2709
  • [27] Structural Basis of Transcription Initiation by Bacterial RNA Polymerase Holoenzyme
    Basu, Ritwika S.
    Warner, Brittany A.
    Molodtsov, Vadim
    Pupov, Danil
    Esyunina, Daria
    Fernandez-Tornero, Carlos
    Kulbachinskiy, Andrey
    Murakami, Katsuhiko S.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (35) : 24549 - 24559
  • [28] Isolation and Characterization of RNA Polymerase rpoB Mutations That Alter Transcription Slippage during Elongation in Escherichia coli
    Zhou, Yan Ning
    Lubkowska, Lucyna
    Hui, Monica
    Court, Carolyn
    Chen, Shuo
    Court, Donald L.
    Strathern, Jeffrey
    Jin, Ding Jun
    Kashlev, Mikhail
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (04) : 2700 - 2710
  • [29] Unraveling the Role of Silent Mutation in the ω-Subunit of Escherichia coli RNA Polymerase: Structure Transition Inhibits Transcription
    Patel, Unnatiben Rajeshbhai
    Gautam, Sudhanshu
    Chatterji, Dipankar
    ACS OMEGA, 2019, 4 (18): : 17714 - 17725
  • [30] An NTP-driven mechanism for the nucleotide addition cycle of Escherichia coli RNA polymerase during transcription
    Johnson, Ronald S. S.
    Strausbauch, Mark
    McCloud, Christopher
    PLOS ONE, 2022, 17 (10):