GEOMETRIC PHASE CARRIED BY THE OBSERVABLES AND ITS APPLICATION TO QUANTUM COMPUTATION

被引:0
作者
Wang, Zisheng [1 ,2 ]
Pan, Hui [2 ]
机构
[1] Jiangxi Normal Univ, Coll Phys & Commun Elect, Nanchang 330022, Peoples R China
[2] Univ Macau, Inst Appl Phys & Mat Engn, Fac Sci & Technol, Macau, Macao, Peoples R China
关键词
Geometric phase; Heisenberg picture; Observales; Nuclear-magnetic-resonance system; Geometric quantum gate; BERRY TOPOLOGICAL PHASE; MAGNETIC-RESONANCE; MIXED-STATE; GATES; STATISTICS; EVOLUTION; SYSTEMS; NMR;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate geometric phases in terms of Heisenberg equation. We find that, equivalently to Schrodinger picture with a memory of its motion in terms of the geometric phase factor contained in the wave function, the observales carry with the geometric message under their evolutions in the Heisenberg picture. Such an intrinsic geometric feature may be particularly useful to implement the multi-time correlation geometric quantum gate in terms of the observables, which leads to a possible reduction in experimental errors as well as gate timing. An application is discussed for nuclear-magnetic-resonance system, where the geometric quantum gate is proposed.
引用
收藏
页码:951 / 961
页数:11
相关论文
共 42 条
[1]   Experimental realization of non-Abelian non-adiabatic geometric gates [J].
Abdumalikov, A. A., Jr. ;
Fink, J. M. ;
Juliusson, K. ;
Pechal, M. ;
Berger, S. ;
Wallraff, A. ;
Filipp, S. .
NATURE, 2013, 496 (7446) :482-485
[2]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[3]  
Ahmadi H, 2012, QUANTUM INF COMPUT, V12, P864
[4]   FRACTIONAL STATISTICS AND THE QUANTUM HALL-EFFECT [J].
AROVAS, D ;
SCHRIEFFER, JR ;
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1984, 53 (07) :722-723
[6]   MANIFESTATION OF BERRY TOPOLOGICAL PHASE IN NEUTRON SPIN ROTATION [J].
BITTER, T ;
DUBBERS, D .
PHYSICAL REVIEW LETTERS, 1987, 59 (03) :251-254
[7]   Effect of noise on geometric logic gates for quantum computation [J].
Blais, A ;
Tremblay, AMS .
PHYSICAL REVIEW A, 2003, 67 (01) :7
[8]   Characterization of the positivity of the density matrix in terms of the coherence vector representation [J].
Byrd, MS ;
Khaneja, N .
PHYSICAL REVIEW A, 2003, 68 (06) :13
[9]   Geometric phase in open systems [J].
Carollo, A ;
Fuentes-Guridi, I ;
Santos, MF ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 2003, 90 (16)
[10]   Use of non-adiabatic geometric phase for quantum computing by NMR [J].
Das, R ;
Kumar, SKK ;
Kumar, A .
JOURNAL OF MAGNETIC RESONANCE, 2005, 177 (02) :318-328