Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicelluloses contents

被引:41
作者
Lu, Yanxu [1 ,2 ]
Tao, Peng [1 ,2 ]
Zhang, Ni [1 ,2 ]
Nie, Shuangxi [1 ,2 ]
机构
[1] Guangxi Univ, Sch Light Ind & Food Engn, Nanning 530004, Peoples R China
[2] Guangxi Key Lab Clean Pulp & Papermaking & Pollut, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Lignocellulosic biomass; Hemicelluloses; Activation energy; Thermal stability; Cellulose nanofibrils; ASSISTED MECHANICAL PRODUCTION; SUGARCANE BAGASSE; DEGRADATION KINETICS; HEXENURONIC ACID; PRETREATMENT; XYLANASE; LIGNIN; WATER; FILM; NANOMATERIAL;
D O I
10.1016/j.carbpol.2020.116463
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this work, cellulose nanofibrils (CNFs) are produced from bagasse pulps with differing hemicelluloses contents by ultrafine grinding and high-pressure homogenization. The results showed that hemicelluloses content in the range of 9.7-21.7 wt.% led to nanofibrils with average diameter. A decrease in hemicelluloses content can enhance the crystallinity and improve the thermal stability of the CNFs. The activation energy of the CNF samples with hemicelluloses contents of 9.7 wt.%, 12.72 wt.%, 15.7 wt.%, 18.76 wt.%, and 21.7 wt.% are 713.03, 518.93, 462.62, 421.78, and 211.11 kJ/mol, respectively, when the conversion rate is increased from 30%-90%. These results demonstrate that hemicelluloses content has a considerable influence on the properties of CNFs. This work provides a theoretical basis for high-value utilization of CNFs, and enriches useful information on the application of CNF materials.
引用
收藏
页数:8
相关论文
共 71 条
  • [1] Enzyme-Assisted Mechanical Fibrillation of Bleached Spruce Kraft Pulp to Produce Well-Dispersed and Uniform-Sized Cellulose Nanofibrils
    Bian, Huiyang
    Li, Guanhan
    Jiao, Liang
    Yu, Zhihuai
    Dui, Hongqi
    [J]. BIORESOURCES, 2016, 11 (04): : 10483 - 10496
  • [2] Brown M.E., 1980, REACTIONS SOLID STAT
  • [3] Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans
    Chen, You Wei
    Lee, Hwei Voon
    Juan, Joon Ching
    Phang, Siew-Moi
    [J]. CARBOHYDRATE POLYMERS, 2016, 151 : 1210 - 1219
  • [4] Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding
    Chen, Yuan
    Fan, Dongbin
    Han, Yanming
    Li, Gaiyun
    Wang, Siqun
    [J]. CELLULOSE, 2017, 24 (12) : 5431 - 5442
  • [5] Isolation and characterization of cellulose nanofibrils from Helicteres isora plant
    Chirayil, Cintil Jose
    Joy, Jithin
    Mathew, Lovely
    Mozetic, Miran
    Koetz, Joachim
    Thomas, Sabu
    [J]. INDUSTRIAL CROPS AND PRODUCTS, 2014, 59 : 27 - 34
  • [6] Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials
    Dai, Lei
    Wang, Yan
    Zou, Xuejun
    Chen, Zhirong
    Liu, Hong
    Ni, Yonghao
    [J]. SMALL, 2020, 16 (13)
  • [7] Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion
    Deepa, B.
    Abraham, Eldho
    Cherian, Bibin Mathew
    Bismarck, Alexander
    Blaker, Jonny J.
    Pothan, Laly A.
    Leao, Alcides Lopes
    de Souza, Sivoney Ferreira
    Kottaisamy, M.
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (02) : 1988 - 1997
  • [8] Characterization and Application of Lignin-Carbohydrate Complexes from Lignocellulosic Materials as Antioxidants for Scavenging In Vitro and In Vivo Reactive Oxygen Species
    Dong, Huiling
    Zheng, Liming
    Yu, Pengjun
    Jiang, Qing
    Wu, Yan
    Huang, Caoxing
    Yin, Baishuang
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (01): : 256 - +
  • [9] Idealized powder diffraction patterns for cellulose polymorphs
    French, Alfred D.
    [J]. CELLULOSE, 2014, 21 (02) : 885 - 896
  • [10] Cellulose nanofiber-graphene all solid-state flexible supercapacitors
    Gao, Kezheng
    Shao, Ziqiang
    Li, Jia
    Wang, Xi
    Peng, Xiaoqing
    Wang, Wenjun
    Wang, Feijun
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (01) : 63 - 67