RAD51 protects human cells from transcription-replication conflicts

被引:30
作者
Bhowmick, Rahul [1 ]
Lerdrup, Mads [1 ]
Gadi, Sampath Amitash [1 ]
Rossetti, Giacomo G. [2 ]
Singh, Manika I. [1 ]
Liu, Ying [1 ]
Halazonetis, Thanos D. [2 ]
Hickson, Ian D. [1 ]
机构
[1] Univ Copenhagen, Ctr Chromosome Stabil, Ctr Hlth Aging, Dept Cellular & Mol Med, DK-2200 Copenhagen N, Denmark
[2] Univ Geneva, Dept Mol Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
基金
瑞士国家科学基金会; 新加坡国家研究基金会;
关键词
PROMOTES GENOME STABILITY; FRAGILE SITES; FORK REVERSAL; DNA-DAMAGE; REPAIR; CANCER; STRESS; COMMON; MECHANISMS; EXPRESSION;
D O I
10.1016/j.molcel.2022.07.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oncogene activation during tumorigenesis promotes DNA replication stress (RS), which subsequently drives the formation of cancer-associated chromosomal rearrangements. Many episodes of physiological RS likely arise due to conflicts between the DNA replication and transcription machineries operating simultaneously at the same loci. One role of the RAD51 recombinase in human cells is to protect replication forks undergoing RS. Here, we have identified a key role for RAD51 in preventing transcription-replication conflicts (TRCs) from triggering replication fork breakage. The genomic regions most affected by RAD51 deficiency are character-ized by being replicated and transcribed in early S-phase and show significant overlap with loci prone to can-cer-associated amplification. Consistent with a role for RAD51 in protecting against transcription-replication conflicts, many of the adverse effects of RAD51 depletion are ameliorated by inhibiting early S-phase tran-scription. We propose a model whereby RAD51 suppresses fork breakage and subsequent inadvertent amplification of genomic loci prone to experiencing TRCs.
引用
收藏
页码:3366 / +
页数:26
相关论文
共 82 条
[51]   Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress [J].
Macheret, Morgane ;
Halazonetis, Thanos D. .
NATURE, 2018, 555 (7694) :112-116
[52]   Break-induced replication: functions and molecular mechanism [J].
Malkova, Anna ;
Ira, Grzegorz .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2013, 23 (03) :271-279
[53]   Control of DNA replication timing in the 3D genome [J].
Marchal, Claire ;
Sima, Jiao ;
Gilbert, David M. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2019, 20 (12) :721-737
[54]   ATR Protects the Genome against R Loops through a MUS81-Triggered Feedback Loop [J].
Matos, Dominick A. ;
Zhang, Jia-Min ;
Ouyang, Jian ;
Nguyen, Hai Dang ;
Genois, Marie-Michelle ;
Zou, Lee .
MOLECULAR CELL, 2020, 77 (03) :514-+
[55]   Sources of DNA Double-Strand Breaks and Models of Recombinational DNA Repair [J].
Mehta, Anuja ;
Haber, James E. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2014, 6 (09)
[56]   Replication stress activates DNA repair synthesis in mitosis [J].
Minocherhomji, Sheroy ;
Ying, Songmin ;
Bjerregaard, Victoria A. ;
Bursomanno, Sara ;
Aleliunaite, Aiste ;
Wu, Wei ;
Mankouri, Hocine W. ;
Shen, Huahao ;
Liu, Ying ;
Hickson, Ian D. .
NATURE, 2015, 528 (7581) :286-+
[57]  
Moll P, 2014, Nat Methods, V11, pi, DOI [10.1038/nmeth.f.376, DOI 10.1038/NMETH.F.376]
[58]   The TNF Paradox in Cancer Progression and Immunotherapy [J].
Montfort, Anne ;
Colacios, Celine ;
Levade, Thierry ;
Andrieu-Abadie, Nathalie ;
Meyer, Nicolas ;
Segui, Bruno .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[59]   PC4 promotes genome stability and DNA repair through binding of ssDNA at DNA damage sites [J].
Mortusewicz, O. ;
Evers, B. ;
Helleday, T. .
ONCOGENE, 2016, 35 (06) :761-770
[60]   Coordination of Structure-Specific Nucleases by Human SLX4/BTBD12 Is Required for DNA Repair [J].
Munoz, Ivan M. ;
Hain, Karolina ;
Declais, Anne-Cecile ;
Gardiner, Mary ;
Toh, Geraldine W. ;
Sanchez-Pulido, Luis ;
Heuckmann, Johannes M. ;
Toth, Rachel ;
Macartney, Thomas ;
Eppink, Berina ;
Kanaar, Roland ;
Ponting, Chris P. ;
Lilley, David M. J. ;
Rouse, John .
MOLECULAR CELL, 2009, 35 (01) :116-127