On the maximum number of edges in a hypergraph with given matching number

被引:56
作者
Frankl, Peter [1 ]
机构
[1] MTA Renyi Inst, Budapest, Hungary
关键词
Hypergraph; FINITE SETS; SYSTEMS; SIZE;
D O I
10.1016/j.dam.2016.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the present paper is to prove that the maximum number of edges in a 3-uniform hypergraph on n vertices and matching number s is max{(3s+2)(3)), ((n)(3)) - ((n-s)(3))} for all n, s, n >= 3s + 2. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:562 / 581
页数:20
相关论文
共 15 条
[1]   The complete intersection theorem for systems of finite sets [J].
Ahlswede, R ;
Khachatrian, LH .
EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (02) :125-136
[2]  
[Anonymous], 1968, J COMB THEORY
[3]   SETS OF INDEPENDENT EDGES OF A HYPERGRAPH [J].
BOLLOBAS, B ;
DAYKIN, DE ;
ERDOS, P .
QUARTERLY JOURNAL OF MATHEMATICS, 1976, 27 (105) :25-32
[4]   INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
ERDOS, P ;
RADO, R ;
KO, C .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :313-&
[5]  
Erdos P., 1965, Ann. Univ. Sci. Budapest. Eotvos Sect. Math, V8, P93
[6]   EXACT SOLUTION OF SOME TURAN-TYPE PROBLEMS [J].
FRANKL, P ;
FUREDI, Z .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 45 (02) :226-262
[7]  
Frankl P., 2016, COMBINATORICA UNPUB
[8]  
Frankl P., 1995, HDB COMBINATORICS, V2, P1293
[9]  
Frankl P., 1987, Surveys in combinatorics 1987 (New Cross, 1987), V123, P81
[10]  
Frankl P., 1978, Coll. Math. Soc. J. Bolyai, V18, P365