INTEGRAL OPERATORS WITH TWO VARIABLE INTEGRATION LIMITS ON THE CONE OF MONOTONE FUNCTIONS

被引:0
作者
Kalybay, Aigerim [1 ]
Oinarov, Ryskul [2 ]
Temirkhanova, Ainur [2 ]
机构
[1] KIMEP Univ, 4 Abai Ave, Alma Ata 050010, Kazakhstan
[2] LN Gumilyov Eurasian Natl Univ, 5 Munaytpasov St, Astana 010008, Kazakhstan
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2019年 / 13卷 / 01期
关键词
Integral operator with variable integration limits; Hardy-Steklov operator; weighted inequality; non-increasing function; non-decreasing function; LEBESGUE SPACES; BOUNDEDNESS; INEQUALITIES; KERNEL; COMPACTNESS;
D O I
10.7153/jmi-2019-13-01
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weighted inequalities for the Hardy-Steklov operators with variable integration limits on the cone of monotone functions have been investigated with success. The similar problem for operators with kernels has remained unsolved up to now. In this paper we find characterizations for integral operators with a wide class of kernels.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 23 条
[1]  
ARENDARENKO L. S., 2013, ADV HARMONIC ANAL OP, P77
[2]   WEIGHTED INEQUALITIES OF HARDY TYPE [J].
BATUEV, EN ;
STEPANOV, VD .
SIBERIAN MATHEMATICAL JOURNAL, 1989, 30 (01) :8-16
[3]   Generalized Hardy operators and normalizing measures [J].
Chen, TL ;
Sinnamon, G .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (06) :829-866
[4]   Reduction theorems for weighted integral inequalities on the cone of monotone functions [J].
Gogatishvili, A. ;
Stepanov, V. D. .
RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (04) :597-664
[5]   The generalized hardy operator with kernel and variable integral limits in Banach function spaces [J].
Gogatishvili, A ;
Lang, J .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 4 (01) :1-16
[6]   WEIGHTED HARDY INEQUALITIES FOR INCREASING FUNCTIONS [J].
HEINIG, HP ;
STEPANOV, VD .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (01) :104-116
[7]  
Heinig HP, 1998, STUD MATH, V129, P157
[8]  
Kufner A., 2007, The Hardy inequality. About its history and some related results
[9]  
Kufner A., 2017, Weighted inequalities of Hardy type, VSecond
[10]   Boundedness of integral operators in weighted Sobolev spaces [J].
Oinarov, R. .
IZVESTIYA MATHEMATICS, 2014, 78 (04) :836-853