Study on all-optical switching by nonlinear optical loop mirror base on microstructured optical fiber

被引:0
作者
Song, XP [1 ]
Yang, GQ [1 ]
Zhang, X [1 ]
Huang, YQ [1 ]
Ren, XM [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
来源
PASSIVE COMPONENTS AND FIBER-BASED DEVICES II, PT 1 AND 2 | 2005年 / 6019卷
关键词
microstuctured optical fiber; nonlinear optical loop mirror; all-optical switching; self phase modulation; PHOTONIC CRYSTAL FIBERS;
D O I
10.1117/12.633471
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this paper, the experiment on all-optical switching based on microstructured optical fiber (MOF) is reported. In experiment, a 25-meter-long MOF(y=36W(-1)km(-1)@1550nm) is used as nonlinear medium of nonlinear optical loop mirror and the input signal is generated by a 10GHz tunable picosecond laser source (u(2)t TMLL1550), with a full-width at half-maximum (FWHM) pulse width of 2 ps centered at 1550 nm. With the increase of input power, a pi nonlinear phase shift is obtained by 40/60 coupler in experiment, but the same thing not be found by 48/52 coupler. Strong confinement of electromagnetic radiation in the fiber core allow that microstructured optical fiber can have a much higher nonlinearity per unit length than conventional fibers, and consequently devices based on such fibers can be much shorter in length than their conventional counterparts. Additionally, the switching can also be used as reshaping devices.
引用
收藏
页码:U884 / U891
页数:8
相关论文
共 13 条
[1]  
Agrawal G.P., 2002, Nonlinear fiber optics
[2]   Dispersion compensation using single-material fibers [J].
Birks, TA ;
Mogilevtsev, D ;
Knight, JC ;
Russell, PS .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (06) :674-676
[3]   Nonlinearity in holey optical fibers: measurement and future opportunities [J].
Broderick, NGR ;
Monro, TM ;
Bennett, PJ ;
Richardson, DJ .
OPTICS LETTERS, 1999, 24 (20) :1395-1397
[4]   Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling [J].
Hansen, TP ;
Broeng, J ;
Jakobsen, C ;
Vienne, G ;
Simonsen, HR ;
Nielsen, MD ;
Skovgaard, PMW ;
Folkenberg, R ;
Bjarklev, A .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2004, 22 (01) :11-15
[5]   Highly birefringent index-guiding photonic crystal fibers [J].
Hansen, TP ;
Broeng, J ;
Libori, SEB ;
Knudsen, E ;
Bjarklev, A ;
Jensen, JR ;
Simonsen, H .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13 (06) :588-590
[6]   Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide [J].
Kanter, GS ;
Kumar, P ;
Parameswaran, KR ;
Fejer, MM .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13 (04) :341-343
[7]  
KNOROV SO, 2004, PHYS QUANTUM OPTICS, V96, P575
[8]   Soliton self-frequency shift in a short tapered air-silica microstructure fiber [J].
Liu, X ;
Xu, C ;
Knox, WH ;
Chandalia, JK ;
Eggleton, BJ ;
Kosinski, SG ;
Windeler, RS .
OPTICS LETTERS, 2001, 26 (06) :358-360
[9]   Improved large-mode-area endlessly single-mode photonic crystal fibers [J].
Mortensen, NA ;
Nielsen, MD ;
Folkenberg, JR ;
Petersson, A ;
Simonsen, HR .
OPTICS LETTERS, 2003, 28 (06) :393-395
[10]   Highly nonlinear and anomalously dispersive lead silicate glass holey fibers [J].
Petropoulos, P ;
Ebendorff-Heidepriem, H ;
Finazzi, V ;
Moore, RC ;
Frampton, K ;
Richardson, DJ ;
Monro, TM .
OPTICS EXPRESS, 2003, 11 (26) :3568-3573