A Convergent Adaptive Finite Element Method for Cathodic Protection

被引:1
作者
Li, Guanglian [1 ]
Xu, Yifeng [2 ,3 ]
机构
[1] Univ Bonn, Inst Numer Simulat, Wegelerstr 6, D-53115 Bonn, Germany
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Shanghai Normal Univ, Sci Comp Key Lab Shanghai Univ, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
Cathodic Protection; Nonlinear Boundary Condition; A Posteriori Error Estimate; Adaptive Finite Element Method; Convergence; P-LAPLACIAN EQUATION;
D O I
10.1515/cmam-2016-0032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose and analyze an adaptive finite element method for a steady-state diffusion equation with a nonlinear boundary condition arising in cathodic protection. Under a general assumption on the marking strategy, we show that the algorithm generates a sequence of discrete solutions that converges strongly to the exact solution in H-1(Omega) and the sequence of error estimators has a vanishing limit. Numerical results show clearly the convergence and efficiency of the adaptive algorithm.
引用
收藏
页码:105 / 120
页数:16
相关论文
共 21 条
  • [1] Ainsworth M., 2000, PURE APPL MATH NEW Y
  • [2] [Anonymous], 2013, POSTERIORI ERROR EST, DOI DOI 10.1093/ACPROF:OSO/9780199679423.001.0001
  • [3] Optimality of an adaptive finite element method for the p-Laplacian equation
    Belenki, Liudmila
    Diening, Lars
    Kreuzer, Christian
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (02) : 484 - 510
  • [4] Brenner S.C., 2008, MATH THEORY FINITE E, V15
  • [5] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [6] Axioms of adaptivity
    Carstensen, C.
    Feischl, M.
    Page, M.
    Praetorius, D.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) : 1195 - 1253
  • [7] CIARLET P. G., 2002, Classics in Appl. Math., V40
  • [8] Linear convergence of an adaptive finite element method for the p-Laplacian equation
    Diening, Lars
    Kreuzer, Christian
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) : 614 - 638
  • [9] Evans L. E., 1992, NUMER MATH, V71, P289
  • [10] Funken Stefan, 2011, Computational Methods in Applied Mathematics, V11, P460