Precise Euclidean distance transforms in 3D from voxel coverage representation

被引:1
作者
Ilic, Vladimir [1 ]
Lindblad, Joakim [1 ]
Sladoje, Natasa [1 ,2 ]
机构
[1] Univ Novi Sad, Fac Engn, Novi Sad 21000, Serbia
[2] Uppsala Univ, Ctr Image Anal, S-75105 Uppsala, Sweden
关键词
Distance transform; Precision; Coverage representation; Vector propagation DT algorithm; Sub--voxel accuracy; ARBITRARY DIMENSIONS; LINEAR-TIME; SEGMENTATION; ALGORITHM;
D O I
10.1016/j.patrec.2015.07.035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Distance transforms (DTs) are, usually, defined on a binary image as a mapping from each background element to the distance between its centre and the centre of the closest object element. However, due to discretization effects, such DTs have limited precision, including reduced rotational and translational invariance. We show in this paper that a significant improvement in performance of Euclidean DTs can be achieved if voxel coverage values are utilized and the position of an object boundary is estimated with sub-voxel precision. We propose two algorithms of linear time complexity for estimating Euclidean DT with sub-voxel precision. The evaluation confirms that both algorithms provide 4-14 times increased accuracy compared to what is achievable from a binary object representation. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:184 / 191
页数:8
相关论文
共 50 条
[21]   Using spatiotemporal stacks for precise vehicle tracking from roadside 3D LiDAR data [J].
Chang, Yuyi ;
Xiao, Wen ;
Coifman, Benjamin .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2023, 154
[22]   Geodesic Distance Algorithm for Extracting the Ascending Aorta from 3D CT Images [J].
Jang, Yeonggul ;
Jung, Ho Yub ;
Hong, Youngtaek ;
Cho, Iksung ;
Shim, Hackjoon ;
Chang, Hyuk-Jae .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2016, 2016
[23]   Approximate 3D Euclidean Shortest Paths for Unmanned Aircraft in Urban Environments [J].
Frontera, Guillermo ;
Martin, David J. ;
Besada, Juan A. ;
Gu, Da-Wei .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2017, 85 (02) :353-368
[24]   3D OBJECT CATEGORIZATION WITH PROBABILISTIC CONTOUR MODELS Gaussian Mixture Models for 3D Shape Representation [J].
Poetsch, Kerstin ;
Pinz, Axel .
VISAPP 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, 2011, :259-270
[25]   Fast and Precise 3D Fluorophore Localization based on Gradient Fitting [J].
Ma, Hongqiang ;
Xu, Jianquan ;
Jin, Jingyi ;
Gao, Ying ;
Lan, Li ;
Liu, Yang .
SCIENTIFIC REPORTS, 2015, 5
[26]   3D video segmentation using point distance histograms [J].
Xu, JF ;
Yamasaki, T ;
Aizawa, K .
2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, :153-156
[27]   VoxelEmbed: 3D Instance Segmentation and Tracking with Voxel Embedding based Deep Learning [J].
Zhao, Mengyang ;
Liu, Quan ;
Jha, Aadarsh ;
Deng, Ruining ;
Yao, Tianyuan ;
Mahadevan-Jansen, Anita ;
Tyska, Matthew J. ;
Millis, Bryan A. ;
Huo, Yuankai .
MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2021, 2021, 12966 :437-446
[28]   A parallel algorithm to skeletonize the distance transform of 3D objects [J].
Arcelli, Carlo ;
di Baja, Gabriella Sanniti ;
Serino, Luca .
IMAGE AND VISION COMPUTING, 2009, 27 (06) :666-672
[29]   Voxel-based segmentation of 3D point clouds from construction sites using a probabilistic connectivity model [J].
Xu, Yusheng ;
Tuttas, Sebastian ;
Hoegner, Ludwig ;
Stilla, Uwe .
PATTERN RECOGNITION LETTERS, 2018, 102 :67-74
[30]   3D Keypoint Estimation Using Implicit Representation Learning [J].
Zhu, Xiangyu ;
Du, Dong ;
Huang, Haibin ;
Ma, Chongyang ;
Han, Xiaoguang .
COMPUTER GRAPHICS FORUM, 2023, 42 (05)