Continuous hand gesture recognition in the learned hierarchical latent variable space

被引:0
作者
Han, Lei [1 ]
Liang, Wei [1 ]
机构
[1] Beijing Inst Technol, Dept Comp Sci, Beijing 100081, Peoples R China
来源
ARTICULATED MOTION AND DEFORMABLE OBJECTS, PROCEEDINGS | 2008年 / 5098卷
关键词
gesture recognition; dimensionality reduction; crf; hierarchical;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a hierarchical approach for recognizing continuous hand gestures. It consists of hierarchical nonlinear dimensionality reduction based feature extraction and Hierarchical Conditional Random Field (Hierarchical CRF) based motion modeling. Articulated hands can be decomposed into several hand parts and we explore the underlying structures of articulated action spaces for both the hand and hand parts using Hierarchical Gaussian Process Latent Variable Model (HGPLVM). In this hierarchical latent variable space, we propose a Hierarchical CRF, which can simultaneously capture the extrinsic class dynamics and learn the relationship between motions of hand parts and class labels, to model the hand motions. Approving recognition performance is obtained on our user-defined hand gesture dataset.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 50 条
  • [31] Hand Gesture Recognition using an Android Device
    Saxena, Ankita
    Jain, Deepak Kumar
    Singhal, Ananya
    2014 FOURTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT), 2014, : 819 - 822
  • [32] Hand gesture recognition using depth data
    Liu, X
    Fujimura, K
    SIXTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS, 2004, : 529 - 534
  • [33] Seeking a Hierarchical Prototype for Multimodal Gesture Recognition
    Li, Yunan
    Qi, Tianyu
    Ma, Zhuoqi
    Quan, Dou
    Miao, Qiguang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 198 - 209
  • [34] Reduce sEMG channels for Hand Gesture Recognition
    Qu, Yali
    Shang, Haoyan
    Teng, Shenghua
    2020 IEEE 3RD INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING (ICICSP 2020), 2020, : 215 - 220
  • [35] UTILIZING THE BEZIER DESCRIPTORS FOR HAND GESTURE RECOGNITION
    Rashid, Omer
    Al-Hamadi, Ayoub
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3525 - 3529
  • [36] Hand Gesture Recognition with Inertial Sensors and a Magnetometer
    Lee, Mi-So
    Kim, Kyung-Won
    Ryu, Mun-Ho
    Kim, Je-Nam
    SENSORS AND MATERIALS, 2016, 28 (06) : 655 - 660
  • [37] Hand gesture recognition based on depth map
    Sykora, P.
    Kamencay, P.
    Zachariasova, M.
    Hudec, R.
    2014 ELEKTRO, 2014, : 109 - 112
  • [38] Hand Gesture Recognition using Fourier Descriptors
    Gamal, Heba M.
    Abdul-Kader, H. M.
    Sallam, Elsayed A.
    2013 8TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS (ICCES), 2013, : 274 - 279
  • [39] Seeking a Hierarchical Prototype for Multimodal Gesture Recognition
    Li, Yunan
    Qi, Tianyu
    Ma, Zhuoqi
    Quan, Dou
    Miao, Qiguang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 12
  • [40] A Hierarchical Hand Gesture Recognition Framework for Sports Referee Training-Based EMG and Accelerometer Sensors
    Pan, Tse-Yu
    Tsai, Wan-Lun
    Chang, Chen-Yuan
    Yeh, Chung-Wei
    Hu, Min-Chun
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (05) : 3172 - 3183