Continuous hand gesture recognition in the learned hierarchical latent variable space

被引:0
作者
Han, Lei [1 ]
Liang, Wei [1 ]
机构
[1] Beijing Inst Technol, Dept Comp Sci, Beijing 100081, Peoples R China
来源
ARTICULATED MOTION AND DEFORMABLE OBJECTS, PROCEEDINGS | 2008年 / 5098卷
关键词
gesture recognition; dimensionality reduction; crf; hierarchical;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a hierarchical approach for recognizing continuous hand gestures. It consists of hierarchical nonlinear dimensionality reduction based feature extraction and Hierarchical Conditional Random Field (Hierarchical CRF) based motion modeling. Articulated hands can be decomposed into several hand parts and we explore the underlying structures of articulated action spaces for both the hand and hand parts using Hierarchical Gaussian Process Latent Variable Model (HGPLVM). In this hierarchical latent variable space, we propose a Hierarchical CRF, which can simultaneously capture the extrinsic class dynamics and learn the relationship between motions of hand parts and class labels, to model the hand motions. Approving recognition performance is obtained on our user-defined hand gesture dataset.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 50 条
  • [21] Hand posture dataset creation for gesture recognition
    Anton-Canalis, Luis
    Sanchez-Nielsen, Elena
    VISAPP 2006: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2006, : 197 - +
  • [22] Wave diffusion appproach for hand gesture recognition
    Li, Haisheng
    Chen, Mengkai
    2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 1, 2016, : 11 - 14
  • [23] Hand Gesture Recognition for Automatic Tap System
    Ullah, Sadiq
    Saman, Gule
    Khan, Farid
    2015 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2015,
  • [24] LDCRFs-Based Hand Gesture Recognition
    Elmezain, Mahmoud
    Al-Hamadi, Ayoub
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 2670 - 2675
  • [25] Hand Gesture Recognition using MYO Armband
    He, Shunzhan
    Yang, Chenguang
    Wang, Min
    Cheng, Long
    Hu, Zedong
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 4850 - 4855
  • [26] A new approach dedicated to hand gesture recognition
    Binh, Nguyen Dang
    Ejima, Toshiaki
    PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS, VOLS 1 AND 2, 2006, : 62 - 67
  • [27] Dynamic Hand Gesture Recognition Using Kinect
    Kadethankar, Atharva Ajit
    Joshi, Apurv Dilip
    2017 INNOVATIONS IN POWER AND ADVANCED COMPUTING TECHNOLOGIES (I-PACT), 2017,
  • [28] Developing a hand gesture recognition Web system
    Givisiez Fonseca, Andre Perazio
    Batista, Natalia Cosse
    2021 XLVII LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2021), 2021,
  • [29] Hand gesture recognition based on fingertip detection
    Meng, Guoqing
    Wang, Mei
    2013 FOURTH GLOBAL CONGRESS ON INTELLIGENT SYSTEMS (GCIS), 2013, : 107 - 111
  • [30] Hand Gesture Recognition for Virtual Mouse Control
    Magrouni, Issam El
    Ettaoufik, Abdelaziz
    Aouad, Siham
    Maizate, Abderrahim
    International Journal of Interactive Mobile Technologies, 2025, 19 (02) : 53 - 64