Acute Leptin Treatment Enhances Functional Recovery after Spinal Cord Injury

被引:57
|
作者
Maria Fernandez-Martos, Carmen [1 ]
Gonzalez, Pau [1 ]
Javier Rodriguez, Francisco [1 ]
机构
[1] HNP, Mol Neurol Lab, Toledo, Spain
来源
PLOS ONE | 2012年 / 7卷 / 04期
关键词
METHIONYL HUMAN LEPTIN; ACTIVE ANTIRETROVIRAL THERAPY; ALZHEIMERS-DISEASE; KAPPA-B; HYPOTHALAMIC NEURONS; TAU PHOSPHORYLATION; METABOLIC SYNDROME; NEUROPATHIC PAIN; GAIT ANALYSIS; OBESE GENE;
D O I
10.1371/journal.pone.0035594
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Spinal cord injury is a major cause of long-term disability and has no current clinically accepted treatment. Leptin, an adipocyte-derived hormone, is best known as a regulator of food intake and energy expenditure. Interestingly, several studies have demonstrated that leptin has significant effects on proliferation and cell survival in different neuropathologies. Here, we sought to evaluate the role of leptin after spinal cord injury. Findings: Based on its proposed neuroprotective role, we have evaluated the effects of a single, acute intraparenchymal injection of leptin in a clinically relevant animal model of spinal cord injury. As determined by quantitative Real Time-PCR, endogenous leptin and the long isoform of the leptin receptor genes show time-dependent variations in their expression in the healthy and injured adult spinal cord. Immunohistochemical analysis of post-injury tissue showed the long isoform of the leptin receptor expression in oligodendrocytes and, to a lesser extent, in astrocytes, microglia/macrophages and neurons. Moreover, leptin administered after spinal cord injury increased the expression of neuroprotective genes, reduced caspase-3 activity and decreased the expression of pro-inflammatory molecules. In addition, histological analysis performed at the completion of the study showed that leptin treatment reduced microglial reactivity and increased caudal myelin preservation, but it did not modulate astroglial reactivity. Consequently, leptin improved the recovery of sensory and locomotor functioning. Conclusions: Our data suggest that leptin has a prominent neuroprotective and anti-inflammatory role in spinal cord damage and highlights leptin as a promising therapeutic agent.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Alendronate Enhances Functional Recovery after Spinal Cord Injury
    Choi, Yuna
    Shin, Taekyun
    EXPERIMENTAL NEUROBIOLOGY, 2022, 31 (01) : 54 - 64
  • [2] Acute intrathecal BDNF enhances functional recovery after cervical spinal cord injury in rats
    Sieck, Gary C.
    Gransee, Heather M.
    Zhan, Wen-Zhi
    Mantilla, Carlos B.
    JOURNAL OF NEUROPHYSIOLOGY, 2021, 125 (06) : 2158 - 2165
  • [3] Walking after spinal cord injury:: Evaluation, treatment, and functional recovery
    Barbeau, H
    Ladouceur, M
    Norman, KE
    Pépin, A
    Leroux, A
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 1999, 80 (02): : 225 - 235
  • [4] BMP inhibition enhances axonal growth and functional recovery after spinal cord injury
    Matsuura, Iichiro
    Taniguchi, Junko
    Hata, Katsuhiko
    Saeki, Naokatsu
    Yamashita, Toshihide
    JOURNAL OF NEUROCHEMISTRY, 2008, 105 (04) : 1471 - 1479
  • [5] Acute baclofen administration promotes functional recovery after spinal cord injury
    Pinho, Andreia G.
    Monteiro, Susana
    Liberato, Valentina
    Santos, Diogo J.
    Campos, Jonas
    Cibra, Jorge R.
    Silva, Nuno A.
    de Sousa, Nidia
    Barreiro-Iglesias, Anton
    Salgado, Antonio J.
    SPINE JOURNAL, 2023, 23 (03): : 379 - 391
  • [6] What is a functional recovery after spinal cord injury?
    Privat, A
    Ribotta, MGY
    Orsal, D
    NATURE MEDICINE, 2000, 6 (04) : 358 - 358
  • [7] What is a functional recovery after spinal cord injury?
    A. Privat
    M. Gimenez Y Ribotta
    D. Orsal
    Nature Medicine, 2000, 6 (4) : 358 - 358
  • [8] Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury
    Mantilla, Carlos B.
    Gransee, Heather M.
    Zhan, Wen-Zhi
    Sieck, Gary C.
    EXPERIMENTAL NEUROLOGY, 2013, 247 : 101 - 109
  • [9] Osteopontin enhances the effect of treadmill training and promotes functional recovery after spinal cord injury
    Yunhang Wang
    Hong Su
    Juan Zhong
    Zuxiong Zhan
    Qin Zhao
    Yuan Liu
    Sen Li
    Haiyan Wang
    Ce Yang
    Lehua Yu
    Botao Tan
    Ying Yin
    Molecular Biomedicine, 4
  • [10] Osteopontin enhances the effect of treadmill training and promotes functional recovery after spinal cord injury
    Wang, Yunhang
    Su, Hong
    Zhong, Juan
    Zhan, Zuxiong
    Zhao, Qin
    Liu, Yuan
    Li, Sen
    Wang, Haiyan
    Yang, Ce
    Yu, Lehua
    Tan, Botao
    Yin, Ying
    MOLECULAR BIOMEDICINE, 2023, 4 (01):