Limit Cycles of a Class of Cubic Lienard Equations

被引:1
作者
Jin, Huatao [1 ]
Shui, Shuliang [1 ]
机构
[1] Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Lienard equations; Limit cycles; Hopf bifurcations;
D O I
10.1007/s12346-011-0045-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a class of polynomial Lienard systems (x) over dot = y - (a(1)x + a(2)x(2) + a(3)x(3)), (y) over dot = -(b(1)x + b(2)x(2) + b(3)x(3)), is considered. Some conditions of the existence, non-existence and uniqueness of limit cycles are obtained by using Filippov transformations and Zhang's theorem. We obtain that the above system has at most one limit cycle surrounding the origin if a(1)a(3) < 0 or b(2) = 0. And, one example is given to illustrate that the system can have three limit cycles.
引用
收藏
页码:317 / 326
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1942, Duke Math. J, DOI [DOI 10.1215/S0012-7094-42-00928-1, 10.1215/S0012-7094-42-00928-1]
[2]  
[Anonymous], 1985, Qualitative theory of differential equations
[3]   THE NUMBER OF SMALL-AMPLITUDE LIMIT-CYCLES OF LIENARD EQUATIONS [J].
BLOWS, TR ;
LLOYD, NG .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 95 (MAR) :359-366
[4]   Small-amplitude limit cycle bifurcations for Lienard systems with quadratic or cubic damping or restoring forces [J].
Christopher, C ;
Lynch, S .
NONLINEARITY, 1999, 12 (04) :1099-1112
[5]  
Dragilev A.V., 1952, PRIKL MAT MEKH, V16, P85
[6]  
Han M., 1999, Ann. Differ. Equat, V15, P113
[7]  
Jin T.-Y., 1999, J JINZHOU NORMAL COL, V20, P1
[8]  
Li Z.-X., 1986, J YUNNAN COLL, V2, P94
[9]  
Lins A., 1977, LECT NOTES MATH, V597, P335
[10]   SMALL-AMPLITUDE LIMIT-CYCLES OF CERTAIN LIENARD SYSTEMS [J].
LLOYD, NG ;
LYNCH, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 418 (1854) :199-208