Detecting influential observations in a model-based cluster analysis

被引:2
作者
Bruckers, Liesbeth [1 ]
Molenberghs, Geert [1 ,2 ]
Verbeke, Geert [1 ,2 ]
Geys, Helena [3 ]
机构
[1] Univ Hasselt, I BioStat, Hasselt, Belgium
[2] Univ Leuven, I Biostat, Leuven, Belgium
[3] Janssen Pharmaceut, Beerse, Belgium
关键词
Local influence; model-based clustering; finite mixture model; LOCAL INFLUENCE; DIAGNOSTICS; POINTS;
D O I
10.1177/0962280216634112
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Finite mixture models have been used to model population heterogeneity and to relax distributional assumptions. These models are also convenient tools for clustering and classification of complex data such as, for example, repeated-measurements data. The performance of model-based clustering algorithms is sensitive to influential and outlying observations. Methods for identifying outliers in a finite mixture model have been described in the literature. Approaches to identify influential observations are less common. In this paper, we apply local-influence diagnostics to a finite mixture model with known number of components. The methodology is illustrated on real-life data.
引用
收藏
页码:521 / 540
页数:20
相关论文
共 32 条
[21]  
Muthen B., 2004, HDB QUANTITATIVE MET, P345, DOI DOI 10.4135/9781412986311.N19
[22]   Analyzing developmental trajectories: A semiparametric, group-based approach [J].
Nagin, DS .
PSYCHOLOGICAL METHODS, 1999, 4 (02) :139-157
[23]   Local influence to detect influential data structures for generalized linear mixed models [J].
Ouwens, MJNM ;
Tan, FES ;
Berger, MPF .
BIOMETRICS, 2001, 57 (04) :1166-1172
[24]  
Pinheiro JC., 1995, J COMPUTATIONAL GRAP, V4, P12, DOI [DOI 10.1080/10618600.1995.10474663, DOI 10.2307/1390625]
[25]  
Sain SR, 1999, B SEISMOL SOC AM, V89, P294
[26]  
Seber G.A.F., 1984, Multivariate observations, DOI DOI 10.1002/9780470316641
[27]  
Spiessens B., 2002, A SAS-macro for the classification of longitudinal profiles using mixtures of normal distributions in nonlinear and generalised linear mixed models
[28]   A linear mixed-effects model with heterogeneity in the random-effects population [J].
Verbeke, G ;
Lesaffre, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) :217-221
[29]   Sensitivity analysis for nonrandom dropout: A local influence approach [J].
Verbeke, G ;
Molenberghs, G ;
Thijs, H ;
Lesaffre, E ;
Kenward, MG .
BIOMETRICS, 2001, 57 (01) :7-14
[30]  
Wang S, 1971, J COMPUT GRAPH STAT, V6, P285