On the existence of vanishing at infinity symmetric solutions to the plane stationary exterior Navier-Stokes problem

被引:31
作者
Pileckas, Konstantin [1 ]
Russo, Remigio [2 ]
机构
[1] Vilnius State Univ, Dept Math & Informat, LT-03225 Vilnius, Lithuania
[2] Univ Naples 2, Dipartimento Matemat, I-81100 Caserta, Italy
关键词
2; DIMENSIONS; EQUATIONS; FLOW; DOMAIN; BODY;
D O I
10.1007/s00208-011-0653-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a nonhomogeneous boundary-value problem for the steady-state Navier-Stokes equations in a two-dimensional exterior domain with two orthogonal symmetry axes. The existence of a solution which tends to zero uniformly at infinity is proved under suitable parity conditions on the data of the problem. The result is obtained for arbitrary values of the flux of the boundary datum.
引用
收藏
页码:643 / 658
页数:16
相关论文
共 50 条
[41]   Suitable Solutions for the Navier-Stokes Problem with an Homogeneous Initial Value [J].
Lemarie-Rieusset, Pierre Gilles ;
Lelievre, Frederic .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (01) :133-156
[42]   Localized method of approximate particular solutions for solving unsteady Navier-Stokes problem [J].
Zhang, Xueying ;
Chen, Muyuan ;
Chen, C. S. ;
Li, Zhiyong .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (03) :2265-2273
[43]   Existence and Uniqueness of Very Weak Solutions to the Steady-State Navier-Stokes Problem in Lipschitz Domains [J].
Coscia, Vincenzo .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2017, 19 (04) :819-829
[44]   Stability of a finite element method for 3D exterior stationary Navier-Stokes flows [J].
Deuring, Paul .
APPLICATIONS OF MATHEMATICS, 2007, 52 (01) :59-94
[45]   The 3D Navier-Stokes Problem [J].
Doering, Charles R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2009, 41 :109-128
[46]   Weighted Hilbert spaces for the stationary exterior Stokes problem with Navier slip boundary conditions [J].
Dhifaoui, Anis ;
Meslameni, Mohamed ;
Razafison, Ulrich .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (02) :1846-1871
[47]   Uniqueness of Steady Navier-Stokes Flows in Exterior Domains [J].
Nakatsuka, Tomoyuki .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02) :323-337
[48]   Global Existence of Solutions to 2-D Navier-Stokes Flow with Non-decaying Initial Data in Exterior Domains [J].
Maremonti, Paolo ;
Shimizu, Senjo .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (03) :899-927
[49]   GLOBAL STRONG SOLUTIONS TO THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES SYSTEM IN THE EXTERIOR OF A CYLINDER\ast [J].
Guo, Zhengguang ;
Wang, Yun ;
Xie, Chunjing .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (06) :6804-6821
[50]   Existence of the stationary Navier-Stokes flow in R2 around a radial flow [J].
Maekawa, Yasunori ;
Tsurumi, Hiroyuki .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 350 :202-227