On the existence of vanishing at infinity symmetric solutions to the plane stationary exterior Navier-Stokes problem

被引:31
作者
Pileckas, Konstantin [1 ]
Russo, Remigio [2 ]
机构
[1] Vilnius State Univ, Dept Math & Informat, LT-03225 Vilnius, Lithuania
[2] Univ Naples 2, Dipartimento Matemat, I-81100 Caserta, Italy
关键词
2; DIMENSIONS; EQUATIONS; FLOW; DOMAIN; BODY;
D O I
10.1007/s00208-011-0653-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a nonhomogeneous boundary-value problem for the steady-state Navier-Stokes equations in a two-dimensional exterior domain with two orthogonal symmetry axes. The existence of a solution which tends to zero uniformly at infinity is proved under suitable parity conditions on the data of the problem. The result is obtained for arbitrary values of the flux of the boundary datum.
引用
收藏
页码:643 / 658
页数:16
相关论文
共 50 条
[21]   Directional approach to spatial structure of solutions to the Navier-Stokes equations in the plane [J].
Konieczny, P. ;
Mucha, P. B. .
NONLINEARITY, 2011, 24 (06) :1861-1882
[22]   On the Navier-Stokes Problem in Exterior Domains with Non Decaying Initial Data [J].
Galdi, Giovanni P. ;
Maremonti, Paolo ;
Zhou, Yong .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2012, 14 (04) :633-652
[23]   Dirichlet Problem for the Stationary Navier-Stokes System on Lipschitz Domains [J].
Choe, Hi Jun ;
Kim, Hyunseok .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (11) :1919-1944
[24]   An existence theorem for steady Navier-Stokes equations in the axially symmetric case [J].
Korobkov, Mikhail ;
Pileckas, Konstantin ;
Russo, Remigio .
ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2015, 14 (01) :233-262
[25]   Existence of a Stationary Navier-Stokes Flow Past a Rigid Body, with Application to Starting Problem in Higher Dimensions [J].
Takahashi, Tomoki .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (02)
[26]   GLOBAL EXISTENCE OF WEAK SOLUTION TO THE FREE BOUNDARY PROBLEM FOR COMPRESSIBLE NAVIER-STOKES [J].
Guo, Zhenhua ;
Li, Zilai .
KINETIC AND RELATED MODELS, 2016, 9 (01) :75-103
[27]   On the decay of infinite energy solutions to the Navier-Stokes equations in the plane [J].
Bjorland, Clayton ;
Niche, Cesar J. .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (07) :670-674
[28]   Exterior Navier-Stokes flows for bounded data [J].
Abe, Ken .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (07) :972-985
[29]   Regularity properties of a generalized Oseen evolution operator in exterior domains, with applications to the Navier-Stokes initial value problem [J].
Asami, Yosuke ;
Hishida, Toshiaki .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2025, 27 (02)
[30]   Limiting behavior of solutions of the exterior Stokes problem as the friction coefficient tends to zero and infinity [J].
Dhifaoui, Anis ;
Baranovskii, Evgenii S. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (05)