NDG-CAM: Nuclei Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM

被引:20
作者
Altini, Nicola [1 ]
Brunetti, Antonio [1 ,2 ]
Puro, Emilia [1 ]
Taccogna, Maria Giovanna [1 ]
Saponaro, Concetta [3 ]
Zito, Francesco Alfredo [4 ]
De Summa, Simona [5 ]
Bevilacqua, Vitoantonio [1 ,2 ]
机构
[1] Polytech Univ Bari, Dept Elect & Informat Engn DEI, Via Edoardo Orabona 4, I-70126 Bari, BA, Italy
[2] Apulian Bioengn Srl, Via Violette 14, I-70026 Modugno, BA, Italy
[3] Ctr Riferimento Oncol Basilicata IRCCS CROB, Lab Preclin & Translat Res, Via Padre Pio 1, I-85028 Rionero In Vulture, PZ, Italy
[4] IRCCS Ist Tumori Giovanni Paolo II, Pathol Dept, Via O Flacco 65, I-70124 Bari, BA, Italy
[5] IRCCS Ist Tumori Giovanni Paolo II, Mol Diagnost & Pharmacogenet Unit, Via O Flacco 65, I-70124 Bari, BA, Italy
来源
BIOENGINEERING-BASEL | 2022年 / 9卷 / 09期
关键词
nuclei segmentation; histopathology; deep learning; Grad-CAM; semantic segmentation; instance segmentation; nuclei detection;
D O I
10.3390/bioengineering9090475
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Nuclei identification is a fundamental task in many areas of biomedical image analysis related to computational pathology applications. Nowadays, deep learning is the primary approach by which to segment the nuclei, but accuracy is closely linked to the amount of histological ground truth data for training. In addition, it is known that most of the hematoxylin and eosin (H&E)-stained microscopy nuclei images contain complex and irregular visual characteristics. Moreover, conventional semantic segmentation architectures grounded on convolutional neural networks (CNNs) are unable to recognize distinct overlapping and clustered nuclei. To overcome these problems, we present an innovative method based on gradient-weighted class activation mapping (Grad-CAM) saliency maps for image segmentation. The proposed solution is comprised of two steps. The first is the semantic segmentation obtained by the use of a CNN; then, the detection step is based on the calculation of local maxima of the Grad-CAM analysis evaluated on the nucleus class, allowing us to determine the positions of the nuclei centroids. This approach, which we denote as NDG-CAM, has performance in line with state-of-the-art methods, especially in isolating the different nuclei instances, and can be generalized for different organs and tissues. Experimental results demonstrated a precision of 0.833, recall of 0.815 and a Dice coefficient of 0.824 on the publicly available validation set. When used in combined mode with instance segmentation architectures such as Mask R-CNN, the method manages to surpass state-of-the-art approaches, with precision of 0.838, recall of 0.934 and a Dice coefficient of 0.884. Furthermore, performance on the external, locally collected validation set, with a Dice coefficient of 0.914 for the combined model, shows the generalization capability of the implemented pipeline, which has the ability to detect nuclei not only related to tumor or normal epithelium but also to other cytotypes.
引用
收藏
页数:19
相关论文
共 40 条
[1]   Recurrent residual U-Net for medical image segmentation [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Hasan, Mahmudul ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
[2]   Microscopic nuclei classification, segmentation, and detection with improved deep convolutional neural networks (DCNN) [J].
Alom, Zahangir ;
Asari, Vijayan K. ;
Parwani, Anil ;
Taha, Tarek M. .
DIAGNOSTIC PATHOLOGY, 2022, 17 (01)
[3]  
Altini Nicola, 2021, Intelligent Computing Theories and Application: 17th International Conference, ICIC 2021, Proceedings. Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI (12836), P512, DOI 10.1007/978-3-030-84522-3_42
[4]  
Altini Nicola, 2020, Intelligent Computing Theories and Application. 16th International Conference, ICIC 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12463), P342, DOI 10.1007/978-3-030-60799-9_30
[5]   A Fusion Biopsy Framework for Prostate Cancer Based on Deformable Superellipses and nnU-Net [J].
Altini, Nicola ;
Brunetti, Antonio ;
Napoletano, Valeria Pia ;
Girardi, Francesca ;
Allegretti, Emanuela ;
Hussain, Sardar Mehboob ;
Brunetti, Gioacchino ;
Triggiani, Vito ;
Bevilacqua, Vitoantonio ;
Buongiorno, Domenico .
BIOENGINEERING-BASEL, 2022, 9 (08)
[6]   Liver, kidney and spleen segmentation from CT scans and MRI with deep learning: A survey [J].
Altini, Nicola ;
Prencipe, Berardino ;
Cascarano, Giacomo Donato ;
Brunetti, Antonio ;
Brunetti, Gioacchino ;
Triggiani, Vito ;
Carnimeo, Leonarda ;
Marino, Francescomaria ;
Guerriero, Andrea ;
Villani, Laura ;
Scardapane, Arnaldo ;
Bevilacqua, Vitoantonio .
NEUROCOMPUTING, 2022, 490 :30-53
[7]   A Deep Learning Instance Segmentation Approach for Global Glomerulosclerosis Assessment in Donor Kidney Biopsies [J].
Altini, Nicola ;
Cascarano, Giacomo Donato ;
Brunetti, Antonio ;
De Feudis, Irio ;
Buongiorno, Domenico ;
Rossini, Michele ;
Pesce, Francesco ;
Gesualdo, Loreto ;
Bevilacqua, Vitoantonio .
ELECTRONICS, 2020, 9 (11) :1-21
[8]   Semantic Segmentation Framework for Glomeruli Detection and Classification in Kidney Histological Sections [J].
Altini, Nicola ;
Cascarano, Giacomo Donato ;
Brunetti, Antonio ;
Marino, Francescomaria ;
Rocchetti, Maria Teresa ;
Matino, Silvia ;
Venere, Umberto ;
Rossini, Michele ;
Pesce, Francesco ;
Gesualdo, Loreto ;
Bevilacqua, Vitoantonio .
ELECTRONICS, 2020, 9 (03)
[9]   Structured crowdsourcing enables convolutional segmentation of histology images [J].
Amgad, Mohamed ;
Elfandy, Habiba ;
Hussein, Hagar ;
Atteya, Lamees A. ;
Elsebaie, Mai A. T. ;
Elnasr, Lamia S. Abo ;
Sakr, Rokia A. ;
Salem, Hazem S. E. ;
Ismail, Ahmed F. ;
Saad, Anas M. ;
Ahmed, Joumana ;
Elsebaie, Maha A. T. ;
Rahman, Mustafijur ;
Ruhban, Inas A. ;
Elgazar, Nada M. ;
Alagha, Yahya ;
Osman, Mohamed H. ;
Alhusseiny, Ahmed M. ;
Khalaf, Mariam M. ;
Younes, Abo-Alela F. ;
Abdulkarim, Ali ;
Younes, Duaa M. ;
Gadallah, Ahmed M. ;
Elkashash, Ahmad M. ;
Fala, Salma Y. ;
Zaki, Basma M. ;
Beezley, Jonathan ;
Chittajallu, Deepak R. ;
Manthey, David ;
Gutman, David A. ;
Cooper, Lee A. D. .
BIOINFORMATICS, 2019, 35 (18) :3461-3467
[10]  
[Anonymous], CRCHISTOPHENOTYPES L