Rapid algorithm prototyping and implementation for power quality measurement

被引:3
作者
Kolek, Krzysztof [1 ]
Piatek, Krzysztof [1 ]
机构
[1] AGH Univ Sci & Technol, PL-30059 Krakow, Poland
关键词
Automatic code generation; Flicker; PLL; Power quality; Rapid prototyping; Simulink; Synchronisation; PHASE-LOCKED LOOP; CONVERTERS; SYSTEM;
D O I
10.1186/s13634-015-0192-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a Model-Based Design (MBD) approach to rapidly implement power quality (PQ) metering algorithms. Power supply quality is a very important aspect of modern power systems and will become even more important in future smart grids. In this case, maintaining the PQ parameters at the desired level will require efficient implementation methods of the metering algorithms. Currently, the development of new, advanced PQ metering algorithms requires new hardware with adequate computational capability and time intensive, cost-ineffective manual implementations. An alternative, considered here, is an MBD approach. The MBD approach focuses on the modelling and validation of the model by simulation, which is well-supported by a Computer-Aided Engineering (CAE) packages. This paper presents two algorithms utilized in modern PQ meters: a phase-locked loop based on an Enhanced Phase Locked Loop (EPLL), and the flicker measurement according to the IEC 61000-4-15 standard. The algorithms were chosen because of their complexity and non-trivial development. They were first modelled in the MATLAB/Simulink package, then tested and validated in a simulation environment. The models, in the form of Simulink diagrams, were next used to automatically generate C code. The code was compiled and executed in real-time on the Zynq Xilinx platform that combines a reconfigurable Field Programmable Gate Array (FPGA) with a dual-core processor. The MBD development of PQ algorithms, automatic code generation, and compilation form a rapid algorithm prototyping and implementation path for PQ measurements. The main advantage of this approach is the ability to focus on the design, validation, and testing stages while skipping over implementation issues. The code generation process renders production-ready code that can be easily used on the target hardware. This is especially important when standards for PQ measurement are in constant development, and the PQ issues in emerging smart grids will require tools for rapid development and implementation of such algorithms.
引用
收藏
页数:12
相关论文
共 26 条
[1]  
[Anonymous], SPEEDAM INT S POW EL
[2]  
[Anonymous], SIM DEV S FUNCT
[3]  
[Anonymous], ELECT POWER QUALITY
[4]  
[Anonymous], 2013, 8 INT S ADV TOPICS E, P1, DOI [10.1109/ATEE.2013.6563485, DOI 10.1109/ATEE.2013.6563485]
[5]  
[Anonymous], ADV ELECT C IN PRESS
[6]  
[Anonymous], APPL SIGNAL PROCESSI
[7]  
[Anonymous], IEEE ACS INT C COMP
[8]  
[Anonymous], 3 INT C POW SYST
[9]  
[Anonymous], OPT TOOLB US GUID
[10]  
Bollen M.H., 2006, SIGNAL PROCESSING PO, V30