QUANTUM AND CLASSICAL LIE SYSTEMS FOR EX EXTENDED SYMPLECTIC GROUPS

被引:0
作者
Gheorghe, A. [1 ]
机构
[1] Natl Inst Phys & Nucl Engn Horia Hulubei, Dept Theoret Phys, RO-077125 Magurele, Romania
来源
ROMANIAN JOURNAL OF PHYSICS | 2013年 / 58卷 / 9-10期
关键词
Lie system; affine symplectic group; Jacobi group; extended; Poincare disk; quasienergy operator; Schrodinger equation; LIMITING SYMMETRY;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the framework of Lie systems, we study the affine symplectic group G(AS) and the Jacobi group G(J). We construct canonical bases for the irreducible unitary representations of G(J) consisting of K-J-vectors, where K-J is the maximal compact subgroup of G(J). We study the quantum Lie systems based on the extended Poincare disk M diffeomorphic to the maximal elliptic coadjoint orbit of G(J). We establish the quasienergy operator reduced to M and the corresponding Wei-Norman equations. Moreover, we obtain the solutions of the time-dependent Schrodinger equation with the initial states represented by K-J-vectors. Finally, we obtain a Poisson algebra isomorphism between the quantum and classical Lie systems based on the Poisson manifold M.
引用
收藏
页码:1436 / 1445
页数:10
相关论文
共 35 条
[1]  
Berceanu S, 2008, ROM J PHYS, V53, P1013
[2]  
Berndt R, 2006, CONTEMP MATH, V398, P47
[3]  
BERNDT R., 1998, Progress in Mathematics, V163
[4]   GENERATING FUNCTIONS FOR AFFINE SYMPLECTIC GROUP [J].
BURDET, G ;
PERRIN, M ;
PERROUD, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 58 (03) :241-254
[5]   Lie systems: theory, generalisations, and applications [J].
Carinena, J. F. ;
de Lucas, J. .
DISSERTATIONES MATHEMATICAE, 2011, (479) :6-+
[6]  
Carinena J.F., 2000, Lie-Scheffers systems: a geometric approach
[7]  
Carinena J..F., 2003, CLASSICAL QUANTUM IN, V59, P143
[8]   Reduction of time-dependent systems admitting a superposition principle [J].
Cariñena, JF ;
Grabowski, J ;
Ramos, A .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (01) :67-87
[9]  
CYCON L, 1987, SCHRODINGER OPERATOR
[10]   APPLICATION OF KIRILLOV THEORY TO REPRESENTATIONS OF O(2,1) [J].
DUNNE, SA .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (05) :860-&