Propagation properties of a partially coherent four-petal Lorentz-Gauss beam in non-Kolmogorov turbulence

被引:2
作者
Liu, Dajun [1 ]
Wang, Guiqiu [1 ]
Zhong, Haiyang [1 ]
Dong, Aiyi [1 ]
Yin, Hongming [1 ]
Wang, Yaochuan [1 ]
机构
[1] Dalian Maritime Univ, Coll Sci, Dept Phys, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
atmosphere propagation; four-petal beam; Lorentz-Gauss beam; average intensity; laser propagation; SCHELL-MODEL BEAMS; OPTICAL VORTICES; SPECTRUM; SYSTEM;
D O I
10.1088/1555-6611/ab0fed
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The model of a partially coherent four-petal Lorentz-Gauss beam generated by the Gaussian Schell-model source was first introduced. The cross-spectral density function of a partially coherent four-petal Lorentz-Gauss beam propagating in non-Kolmogorov turbulence was derived by using the extended Huygens-Fresnel integral. The spreading and coherence properties of a partially coherent four-petal Lorentz-Gauss beam propagating in nonKolmogorov turbulence were studied. The results show that such a beam propagating in non-Kolmogorov turbulence with either larger C-n(2), smaller alpha, larger L-0, or smaller l(0) will lose the four-petal profile distribution and evolve into a solid beam with Gaussian-like distribution more rapidly as the propagation distance increases. The results also show that the spectral degree of coherence of a partially coherent four-petal Lorentz-Gauss beam between two points (-x, 0) and (x, 0) will decrease as the distance of two points increases in the far field.
引用
收藏
页数:8
相关论文
共 28 条
[1]   Propagation properties of multi-Gaussian Schell-model beams through ABCD optical systems and in atmospheric turbulence [J].
Cang, Ji ;
Fang, Xu ;
Liu, Xu .
OPTICS AND LASER TECHNOLOGY, 2013, 50 :65-70
[2]   Effects of non-Kolmogorov turbulence on the orbital angular momentum of Hankel-Bessel-Schell beams [J].
Cheng, Mingjian ;
Zhang, Yixin ;
Zhu, Yun ;
Gao, Jie ;
Dan, Weiyi ;
Hu, Zhengda ;
Zhao, Fengsheng .
OPTICS AND LASER TECHNOLOGY, 2015, 67 :20-24
[3]   The propagation of a flattened circular Gaussian beam through an optical system in turbulent atmosphere [J].
Chu, X. X. ;
Liu, Z. J. ;
Wu, Y. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 92 (01) :119-122
[4]  
Dai HH, 2008, HDB MATH FORMULAS IN, V4th ed.
[5]   Non-Kolmogorov spectrum scintillation aspects of dark hollow and flat topped beams [J].
Eyyuboglu, Halil T. ;
Cai, Yangjian .
OPTICS COMMUNICATIONS, 2012, 285 (06) :969-974
[6]   Spreading and M2-factor of elegant Hermite-Gaussian beams through non-Kolmogorov turbulence [J].
Huang, Yongping ;
Zhao, Guangpu ;
Duan, Zhichun ;
He, De ;
Gao, Zenghui ;
Wang, Fanhou .
JOURNAL OF MODERN OPTICS, 2011, 58 (11) :912-917
[7]   Model of a four-petal Lorentz-Gauss beam and its paraxial propagation [J].
Liu, Dajun ;
Zhong, Haiyang ;
Wang, Guiqiu ;
Wang, Yaochuan .
OPTIK, 2019, 179 :492-498
[8]   Spreading of spiral spectrum of Bessel-Gaussian beam in non-Kolmogorov turbulence [J].
Ou, Jun ;
Jiang, Yuesong ;
Zhang, Jiahua ;
Tang, Hua ;
He, Yuntao ;
Wang, ShuaiHui ;
Liao, Juan .
OPTICS COMMUNICATIONS, 2014, 318 :95-99
[9]   Propagation of partially coherent Bessel-Gaussian beams carrying optical vortices in non-Kolmogorov turbulence [J].
Qin, Zhiyuan ;
Tao, Rumao ;
Zhou, Pu ;
Xu, Xiaojun ;
Liu, Zejin .
OPTICS AND LASER TECHNOLOGY, 2014, 56 :182-188
[10]   METHOD FOR CONVOLUTION OF LINESHAPES WHICH INVOLVE LORENTZ DISTRIBUTION [J].
SCHMIDT, PP .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1976, 9 (13) :2331-2339