High-order quantum algorithm for solving linear differential equations

被引:150
作者
Berry, Dominic W. [1 ,2 ]
机构
[1] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
基金
澳大利亚研究理事会;
关键词
quantum computation; differential equations; quantum algorithms; SIMULATION;
D O I
10.1088/1751-8113/47/10/105301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by a restricted type of linear differential equations. Here we extend quantum simulation algorithms to general inhomogeneous sparse linear differential equations, which describe many classical physical systems. We examine the use of high-order methods (where the error over a time step is a high power of the size of the time step) to improve the efficiency. These provide scaling close to Delta t(2) in the evolution time Delta t. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state, and it is possible to extract global features of the solution.
引用
收藏
页数:17
相关论文
共 30 条
  • [1] AHARONOV A., 2003, P 35 ANN ACM S THEOR, P20, DOI DOI 10.1145/780542.780546
  • [2] Variable time amplitude amplification and quantum algorithms for linear algebra problems
    Ambainis, Andris
    [J]. 29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 : 636 - 647
  • [3] Ambainis A, 2010, LECT NOTES COMPUT SC, V6281, P1, DOI 10.1007/978-3-642-15155-2_1
  • [4] [Anonymous], 2010, ARXIV10104458V2
  • [5] Barz S., 2013, ARXIV13021210
  • [6] Berry D. W., 2013, ARXIV13121414
  • [7] Efficient quantum algorithms for simulating sparse Hamiltonians
    Berry, Dominic W.
    Ahokas, Graeme
    Cleve, Richard
    Sanders, Barry C.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) : 359 - 371
  • [8] Butcher J. C., 2003, Numerical Methods for Ordinary Differential Equations, V2nd, DOI DOI 10.1002/9780470753767
  • [9] Experimental Quantum Computing to Solve Systems of Linear Equations
    Cai, X. -D.
    Weedbrook, C.
    Su, Z. -E.
    Chen, M. -C.
    Gu, Mile
    Zhu, M. -J.
    Li, Li
    Liu, Nai-Le
    Lu, Chao-Yang
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (23)
  • [10] Childs AM, 2004, Ph.D thesis