Multiplexing Zero-Error and Rare-Error Communications over a Noisy Channel with Feedback

被引:0
|
作者
Keresztfalvi, Tibor [1 ]
Lapidoth, Amos [1 ]
机构
[1] Swiss Fed Inst Technol, Signal & Informat Proc Lab, Zurich, Switzerland
来源
2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2017年
关键词
Feedback; multiplexing; Shannon capacity; Zero-error capacity; CAPACITY; LIST; INFORMATION; ERASURE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Two independent data streams the "zero-error stream" and the "rare-error stream" are to he transmitted over a noisy discrete memoryless channel with feedback. Errors are tolerated only in the rare-error stream, provided that their probability tends to zero. Clearly the rate of the error-free stream cannot exceed the channel's zero-error feedback capacity, and the sum of the streams' rates cannot exceed the channel's Shannon capacity. Using a suitable coding scheme, these necessary conditions are shown to characterize all the achievable rate pairs. Planning for the worst as is needed to achieve zero error communication and planning for the true channel as is needed to communicate near the Shannon limit are thus not incompatible.
引用
收藏
页码:1608 / 1612
页数:5
相关论文
共 50 条
  • [31] Zero-Error Relaying for Primitive Relay Channels
    Chen, Yanying
    Devroye, Natasha
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (12) : 7708 - 7715
  • [32] The Birthday Problem and Zero-Error List Codes
    Noorzad, Parham
    Effros, Michelle
    Langberg, Michael
    Kostina, Victoria
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (09) : 5791 - 5803
  • [33] THE ZERO-ERROR CAPACITY OF BINARY CHANNELS WITH 2-MEMORIES
    Zhang, Guofen
    Li, Ping
    Hou, Jianfeng
    Bai, Bo
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (01) : 179 - 191
  • [34] An Improved Bound on the Zero-Error List-Decoding Capacity of the 4/3 Channel
    Dalai, Marco
    Guruswami, Venkatesan
    Radhakrishnan, Jaikumar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (02) : 749 - 756
  • [35] On zero-error source coding with decoder side information
    Koulgi, P
    Tuncel, E
    Regunathan, SL
    Rose, K
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (01) : 99 - 111
  • [36] Zero-Error Sum Modulo Two with a Common Observation
    Sefidgaran, Milad
    Tchamkerten, Asian
    2020 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [37] Zero-error capacity of quantum channels and noiseless subsystems
    Medeiros, Rex A. C.
    Alleaume, Romain
    Cohen, Gerard
    de Assis, Francisco M.
    PROCEEDINGS OF THE IEEE INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM, VOLS 1 AND 2, 2006, : 895 - +
  • [38] BOUNDS ON THE ZERO-ERROR CAPACITY OF THE INPUT-CONSTRAINED BIT-SHIFT CHANNEL
    KRACHKOVSKY, VY
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (04) : 1240 - 1244
  • [39] ZERO-ERROR CORRECTIBILITY AND PHASE RETRIEVABILITY FOR TWIRLING CHANNELS
    Han, Deguang
    Liu, Kai
    REPORTS ON MATHEMATICAL PHYSICS, 2024, 93 (01) : 87 - 102
  • [40] Zero-Error Coding with a Generator Set of Variable-Length Words
    Charpenay, Nicolas
    Le Treust, Mael
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 78 - 83