Multiscale-optimized plasma turbulence simulation on petascale architectures

被引:11
作者
Candy, J. [1 ]
Sfiligoi, I. [3 ]
Belli, E. [1 ]
Hallatschek, K. [2 ]
Holland, C. [3 ]
Howard, N. [4 ]
D'Azevedo, E. [5 ]
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
[2] Max Planck Inst Plasma Phys, Garching, Germany
[3] Univ Calif San Diego, San Diego, CA 92103 USA
[4] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN USA
关键词
TRANSPORT; SHEAR; ELECTRON; WAVES;
D O I
10.1016/j.compfluid.2019.04.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe the mathematical formulation, outline the numerical discretization, and present performance analysis results for the CGYRO plasma turbulence code. The performance data was collected on 5 current leadership systems (2 KNL-based, 2 hybrid CPU-GPU and 1 Skylake-based). CGYRO is a relatively new gyrokinetic turbulence code, based on the well-known GYRO code, but redesigned from the ground up to operate efficiently on multicore and GPU-accelerated systems. The gyrokinetic equations specify a 5-dimensional distribution function for each species, with species coupled through both the Maxwell equations and collision operator. For the cross-machine performance analysis, we report and compare timings for 8 separate computational kernels. This kernel-based breakdown illustrates the strengths and weaknesses of the floating-point and communication architectures of the respective systems. We conclude with a preview of new multiscale turbulence results that are shown to accurately recover experimentally observed electron turbulence levels in an ITER-baseline plasma regime that cannot be described using traditional long-wavelength simulation. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:125 / 135
页数:11
相关论文
共 46 条
  • [1] [Anonymous], GEN ATOMICS GACODE S
  • [2] [Anonymous], 2010, General Atomics Report GA-A26818
  • [3] Impact of centrifugal drifts on ion turbulent transport
    Belli, E. A.
    Candy, J.
    [J]. PHYSICS OF PLASMAS, 2018, 25 (03)
  • [4] Implications of advanced collision operators for gyrokinetic simulation
    Belli, E. A.
    Candy, J.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (04)
  • [5] Full linearized Fokker-Planck collisions in neoclassical transport simulations
    Belli, E. A.
    Candy, J.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (01)
  • [6] Fully electromagnetic gyrokinetic eigenmode analysis of high-beta shaped plasmas
    Belli, E. A.
    Candy, J.
    [J]. PHYSICS OF PLASMAS, 2010, 17 (11)
  • [7] Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics
    Belli, E. A.
    Candy, J.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (09)
  • [8] Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz
    Bourdelle, C.
    Citrin, J.
    Baiocchi, B.
    Casati, A.
    Cottier, P.
    Garbet, X.
    Imbeaux, F.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    Austin, Y.
    Avotina, L.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (01)
  • [9] Preface to Special Topic: ITER
    Campbell, David J.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (02)
  • [10] The effect of ion-scale dynamics on electron-temperature-gradient turbulence
    Candy, J.
    Waltz, R. E.
    Fahey, M. R.
    Holland, C.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (08) : 1209 - 1220