Modern data analytics approach to predict creep of high-temperature alloys

被引:92
作者
Shin, D. [1 ]
Yamamoto, Y. [1 ]
Brady, M. P. [1 ]
Lee, S. [2 ]
Haynes, J. A. [1 ]
机构
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
关键词
High-temperature alloys; Creep; Correlation analysis; Machine learning; Features; Computational thermodynamics; NEURAL-NETWORK MODEL; RESISTANT; DESIGN; STEELS; STRENGTH; NI;
D O I
10.1016/j.actamat.2019.02.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A breakthrough in alloy design often requires comprehensive understanding in complex multi-component/multi-phase systems to generate novel material hypotheses. We introduce a modern data analytics workflow that leverages high-quality experimental data augmented with advanced features obtained from high-fidelity models. Herein, we use an example of a consistently-measured creep dataset of developmental high-temperature alloy combined with scientific alloy features populated from a high-throughput computational thermodynamic approach. Extensive correlation analyses provide ranking insights for most impactful alloy features for creep resistance, evaluated from a large set of candidate features suggested by domain experts. We also show that we can accurately train machine learning models by integrating high-ranking features obtained from correlation analyses. The demonstrated approach can be extended beyond incorporating thermodynamic features, with input from domain experts used to compile lists of features from other alloy physics, such as diffusion kinetics and microstructure evolution. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 34 条
  • [1] Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters
    Agrawal A.
    Deshpande P.D.
    Cecen A.
    Basavarsu G.P.
    Choudhary A.N.
    Kalidindi S.R.
    [J]. Integrating Materials and Manufacturing Innovation, 2014, 3 (1) : 90 - 108
  • [2] COMPARISON OF STOPPING RULES IN FORWARD STEPWISE REGRESSION
    BENDEL, RB
    AFIFI, AA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1977, 72 (357) : 46 - 53
  • [3] Neural networks in materials science
    Bhadeshia, HKDH
    [J]. ISIJ INTERNATIONAL, 1999, 39 (10) : 966 - 979
  • [4] The development of alumina-forming austenitic stainless steels for high-temperature structural use
    Brady, M. P.
    Yamamoto, Y.
    Santella, M. L.
    Maziasz, P. J.
    Pint, B. A.
    Liu, C. T.
    Lu, Z. P.
    Bei, H.
    [J]. JOM, 2008, 60 (07) : 12 - 18
  • [5] Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance
    Brady, M. P.
    Magee, J.
    Yamamoto, Y.
    Helmick, D.
    Wang, L.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 590 : 101 - 115
  • [6] Increasing the Upper Temperature Oxidation Limit of Alumina Forming Austenitic Stainless Steels in Air with Water Vapor
    Brady, M. P.
    Unocic, K. A.
    Lance, M. J.
    Santella, M. L.
    Yamamoto, Y.
    Walker, L. R.
    [J]. OXIDATION OF METALS, 2011, 75 (5-6): : 337 - 357
  • [7] Theoretical design of ferritic creep resistant steels using neural network, kinetic, and thermodynamic models
    Brun, F
    Yoshida, T
    Robson, JD
    Narayan, V
    Bhadeshia, HKDH
    MacKay, DJC
    [J]. MATERIALS SCIENCE AND TECHNOLOGY, 1999, 15 (05) : 547 - 554
  • [8] Hot strength of creep resistant ferritic steels and relationship to creep rupture data
    Dimitriu, R. C.
    Bhadeshia, H. K. D. H.
    [J]. MATERIALS SCIENCE AND TECHNOLOGY, 2007, 23 (09) : 1127 - 1131
  • [9] Gavard L, 1996, MATER SCI TECH SER, V12, P453, DOI 10.1179/026708396790166091
  • [10] Guyon Isabelle, 2003, J MACH LEARN RES, V3, P1157, DOI DOI 10.1016/J.ACA.2011.07.027