Gradient index devices for terahertz waves and terahertz surface waves

被引:0
作者
Volk, M. [1 ,2 ]
Fip, T. [1 ,2 ]
Neu, J. [1 ,2 ]
Hoeh, M. [1 ,2 ]
Reinhard, B. [1 ,2 ]
Beigang, R. [2 ,3 ]
Rahm, M. [1 ,2 ]
机构
[1] Univ Kaiserslautern, Dept Elect & Comp Engn, Erwin Schroedinger Str, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[3] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
来源
TERAHERTZ EMITTERS, RECEIVERS, AND APPLICATIONS IV | 2013年 / 8846卷
关键词
meta-surfaces; terahertz integrated circuits; terahertz metamaterials; designer surface plasmon polaritons; gradient index devices; PLASMON POLARITONS; METAMATERIAL FILM;
D O I
10.1117/12.2025399
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a variety of gradient index (GRIN) devices for both freely propagating terahertz waves and terahertz surface waves. As a specific example of a static GRIN optics we experimentally investigated and measured the optical properties of a GRIN beam deflector. We measured a maximum deflection angle of 6 deg. The thickness of the beam deflector was only about 100 mu m which is sub-wavelength at a frequency of 1.3 THz. Furthermore, we specifically designed meta-surfaces that support strongly confined terahertz surface waves. We show that the surface waves can be deliberately guided within the plane of propagation by use of GRIN structures. For example, we evidenced the focusing behavior of a meta-surface GRIN lens by near-field mapping of the terahertz field.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Surface Plasmons/Polaritons, Surface Waves, and Zenneck Waves Clarification of the terms and a description of the concepts and their evolution [J].
Sarkar, Tapan K. ;
Abdallah, Mohammad N. ;
Salazar-Palma, Magdalena ;
Dyab, Walid M. .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2017, 59 (03) :77-93
[42]   Ultrafast Frequency Shift of Electromagnetically Induced Transparency in Terahertz Metaphotonic Devices [J].
Hu, Yuze ;
Jiang, Tian ;
Sun, Hao ;
Tong, Mingyu ;
You, Jie ;
Zheng, Xin ;
Xu, Zhongjie ;
Cheng, Xiangai .
LASER & PHOTONICS REVIEWS, 2020, 14 (03)
[43]   High-efficiency terahertz polarization devices based on the dielectric metasurface [J].
Zhou, Jian ;
Wang, JingJing ;
Guo, Kai ;
Shen, Fei ;
Zhou, Qingfeng ;
Yin, Zhiping ;
Guo, Zhongyi .
SUPERLATTICES AND MICROSTRUCTURES, 2018, 114 :75-81
[44]   A Complete Circuit Model for Terahertz Spoof Surface Plasmon Polariton Waveguides for Ultrafast and Accurate Synthesis of Terahertz Integrated Circuits [J].
Abdullah Unutmaz, Muhammed ;
Kaan Tokgoz, Korkut ;
Unlu, Mehmet .
IEEE Access, 2025, 13 :111969-111981
[45]   Ultrabroadband Unnaturally High Effective Refractive Index Metamaterials in the Terahertz Region [J].
Jing, Xufeng ;
Gui, Xincui ;
Xia, Rui ;
Hong, Zhi .
IEEE PHOTONICS JOURNAL, 2017, 9 (01)
[46]   A High-Q Terahertz Metamaterials Absorber for Refractive Index Sensing [J].
Bai, Jinjun ;
Shen, Pengyan ;
Wang, Shasha ;
Xu, Wei ;
Shen, Wei ;
Chang, Shengjiang .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2023, 260 (03)
[47]   Exact Solution for Conversion of Surface Waves to Space Waves by Periodical Impenetrable Metasurfaces [J].
Tcvetkova, Svetlana N. ;
Maci, Stefano ;
Tretyakov, Sergei A. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (05) :3200-3207
[48]   Spoof terahertz surface plasmon polaritons on metasurface pathways and networks [J].
Becker, S. ;
Fip, T. ;
Rahm, M. .
TERAHERTZ, RF, MILLIMETER, AND SUBMILLIMETER-WAVE TECHNOLOGY AND APPLICATIONS XV, 2022, 12000
[49]   Demultiplexing Surface Waves With Silicon Nanoantennas [J].
Sinev, I. ;
Bogdanov, A. ;
Komissarenko, F. ;
Petrov, M. ;
Frizyuk, K. ;
Makarov, S. ;
Mukhin, I. ;
Samusev, A. ;
Lavrinenko, A. ;
Iorsh, I. .
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON METAMATERIALS AND NANOPHOTONICS (METANANO-2017), 2017, 1874
[50]   Electromagnetic surface waves on a conducting cylinder [J].
Kotelnikov, Igor A. ;
Stupakov, Gennady V. .
PHYSICS LETTERS A, 2015, 379 (16-17) :1187-1195