Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids

被引:291
作者
Liu, Ting [1 ,2 ]
Liu, Mengmeng [1 ,2 ]
Dou, Su [3 ]
Sun, Jiangman [1 ,2 ]
Cong, Zifeng [1 ,2 ]
Jiang, Chunyan [1 ,2 ]
Du, Chunhua [1 ,2 ]
Pu, Xiong [1 ,2 ]
Hu, Weiguo [1 ,2 ]
Wang, Zhong Lin [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nannosci & Technol, Beijing 100049, Peoples R China
[3] Univ Sci & Technol Beijing, Beijing 100083, Peoples R China
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
triboelectric nanogenerator; soft electronics; hydrogel; energy harvesting skin; tough bonding; CHARGING POWER UNIT; ULTRATHIN; PRESSURE; DEVICES; SENSORS; DRIVEN;
D O I
10.1021/acsnano.8b00108
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A major challenge accompanying the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel-elastomer hybrid as energy skins for harvesting biomechanical energies. The tough interfacial bonding between the hydrophilic hydrogel and hydrophobic elastomer, achieved by the interface modification, ensures the stable mechanical and electrical performances of the TENGs. Furthermore, the dehydration of this toughly bonded hydrogel-elastomer hybrid is significantly inhibited (the average dehydration decreases by over 73%). With PDMS as the electrification layer and hydrogel as the electrode, a stretchable, transparent (90% transmittance), and ultrathin (380 mu m) single-electrode TENG was fabricated to conformally attach on human skin and deform as the body moves. The two-electrode mode TENG is capable of harvesting energy from arbitrary human motions (press, stretch, bend, and twist) to drive the self-powered electronics. This work provides a feasible technology to design soft power sources, which could potentially solve the energy issues of soft electronics.
引用
收藏
页码:2818 / 2826
页数:9
相关论文
共 62 条
  • [1] Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt
    Bai, Yuanyuan
    Chen, Baohong
    Xiang, Feng
    Zhou, Jinxiong
    Wang, Hong
    Suo, Zhigang
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (15)
  • [2] Biomedical applications of hydrogels: A review of patents and commercial products
    Calo, Enrica
    Khutoryanskiy, Vitaliy V.
    [J]. EUROPEAN POLYMER JOURNAL, 2015, 65 : 252 - 267
  • [3] Harmonic-Resonator-Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self-Powered Active Vibration Sensor
    Chen, Jun
    Zhu, Guang
    Yang, Weiqing
    Jing, Qingshen
    Bai, Peng
    Yang, Ya
    Hou, Te-Chien
    Wang, Zhong Lin
    [J]. ADVANCED MATERIALS, 2013, 25 (42) : 6094 - 6099
  • [4] An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing
    Chen, Xuexian
    Song, Yu
    Chen, Haotian
    Zhang, Jinxin
    Zhang, Haixia
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (24) : 12361 - 12368
  • [5] Chortos A, 2016, NAT MATER, V15, P937, DOI 10.1038/NMAT4671
  • [6] Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments
    Chun, Jinsung
    Kim, Jin Woong
    Jung, Woo-suk
    Kang, Chong-Yun
    Kim, Sang-Woo
    Wang, Zhong Lin
    Baik, Jeong Min
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) : 3006 - 3012
  • [7] Hydrogel-based devices for biomedical applications
    Deligkaris, Kosmas
    Tadele, Tadele Shiferaw
    Olthuis, Wouter
    van den Berg, Albert
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2010, 147 (02): : 765 - 774
  • [8] A Highly Stretchable and Washable All-Yarn-Based Self-Charging Knitting Power Textile Composed of Fiber Triboelectric Nanogenerators and Supercapacitors
    Dong, Kai
    Wang, Yi-Cheng
    Deng, Jianan
    Dai, Yejing
    Zhang, Steven L.
    Zou, Haiyang
    Gu, Bohong
    Sun, Baozhong
    Wang, Zhong Lin
    [J]. ACS NANO, 2017, 11 (09) : 9490 - 9499
  • [9] Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics
    Fan, Feng Ru
    Tang, Wei
    Wang, Zhong Lin
    [J]. ADVANCED MATERIALS, 2016, 28 (22) : 4283 - 4305
  • [10] Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films
    Fan, Feng-Ru
    Lin, Long
    Zhu, Guang
    Wu, Wenzhuo
    Zhang, Rui
    Wang, Zhong Lin
    [J]. NANO LETTERS, 2012, 12 (06) : 3109 - 3114