Separability of Generalized Graph Product States

被引:3
作者
Zhao Hui [1 ]
Fan Jiao [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
DENSITY-MATRIX; ENTANGLEMENT; GENERATION; LAPLACIAN;
D O I
10.1088/0256-307X/30/9/090303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct two classes of generalized graph product states and study the entanglement of these states. It is first presented that the density matrices of complex edge-weighted digraphs associated with the generalized graph product in m circle times n systems are positive partial transformation and separable states. Then we prove that the density matrices of the vertex-weighted digraphs associated with another generalized graph product are entangled states.
引用
收藏
页数:4
相关论文
共 21 条
[1]  
Adhikari B, 2012, ARXIV12052747QUANTPH
[2]  
Bapat R B, 2001, GRAPHS MATRICES, P9
[3]   The Laplacian of a graph as a density matrix: A basic combinatorial approach to separability of mixed states [J].
Braunstein, Samuel L. ;
Ghosh, Sibasish ;
Severini, Simone .
ANNALS OF COMBINATORICS, 2006, 10 (03) :291-317
[4]   Some families of density matrices for which separability is easily tested [J].
Braunstein, SL ;
Ghosh, S ;
Mansour, T ;
Severini, S ;
Wilson, RC .
PHYSICAL REVIEW A, 2006, 73 (01)
[5]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[6]   Teleportation of an arbitrary three-particle state [J].
Chen, LB .
CHINESE PHYSICS, 2002, 11 (10) :999-1003
[7]  
Diestel R, 2005, GRAPH THEORY, V173, P5
[8]   INTRODUCTION TO THE BASICS OF ENTANGLEMENT THEORY IN CONTINUOUS-VARIABLE SYSTEMS [J].
Eisert, J. ;
Plenio, M. B. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) :479-506
[9]  
Even S, 2011, GRAPH ALGORITHMS, P117
[10]  
Horn R A, 1985, MATRIX ANAL, P369