An a posteriori error estimator for an unsteady advection-diffusion-reaction problem

被引:5
|
作者
Araya, Rodolfo
Venegas, Pablo [1 ]
机构
[1] Univ Concepcion, CI2MA, Concepcion, Chile
关键词
Advection-diffusion-reaction problem; A posteriori error estimators; Parabolic problems; Stabilized methods; FINITE-ELEMENT METHODS; PARABOLIC EQUATIONS; DISCRETIZATION; STABILITY;
D O I
10.1016/j.camwa.2013.09.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce an a posteriori error estimator, of the residual type, for the unsteady advection-diffusion-reaction problem. For the discretization in time we use an implicit Euler scheme and a continuous, piecewise linear triangular finite elements for the space together with a stabilized scheme. We prove that the approximation error is bounded, by above and below, by the error estimator. Using that, an adaptive algorithm is proposed, analyzed and tested numerically to prove the efficiency of our approach. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2456 / 2476
页数:21
相关论文
共 50 条
  • [21] Dependence of advection-diffusion-reaction on flow coherent structures
    Tang, Wenbo
    Luna, Christopher
    PHYSICS OF FLUIDS, 2013, 25 (10)
  • [22] Posteriori error estimator for linear elliptic problem
    Chinviriyasit, S.
    OPTIMIZATION AND SYSTEMS BIOLOGY, 2007, 7 : 420 - +
  • [23] Regularity and wave study of an advection-diffusion-reaction equation
    Akgul, Ali
    Ahmed, Nauman
    Shahzad, Muhammad
    Baber, Muhammad Zafarullah
    Iqbal, Muhammad Sajid
    Chan, Choon Kit
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] Behaviour of advection-diffusion-reaction processes with forcing terms
    Sari, Murat
    Tahir, Shko Ali
    Bouhamidi, Abderrahman
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (02) : 233 - 252
  • [25] Recursive POD Expansion for the Advection-Diffusion-Reaction Equation
    Azaiez, M.
    Chacon Rebollo, T.
    Perracchione, E.
    Vega, J. M.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (05) : 1556 - 1578
  • [26] The LEM exponential integrator for advection-diffusion-reaction equations
    Caliari, Marco
    Vianello, Marco
    Bergamaschi, Luca
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 210 (1-2) : 56 - 63
  • [27] A quasi-analytical approach to the advection-diffusion-reaction problem, using operator splitting
    Verrall, D. P.
    Read, W. W.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (02) : 1588 - 1598
  • [28] A coefficient identification problem for a system of advection-diffusion-reaction equations in water quality modeling
    Hao, Dinh Nho
    Thanh, Nguyen Trung
    Duc, Nguyen Van
    Thang, Nguyen Van
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2025, 33 (01): : 31 - 52
  • [29] Bilinear Controllability of a Class of Advection-Diffusion-Reaction Systems
    Elamvazhuthi, Karthik
    Kuiper, Hendrik
    Kawski, Matthias
    Berman, Spring
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (06) : 2282 - 2297
  • [30] An adaptive stabilized method for advection-diffusion-reaction equation
    Araya, Rodolfo
    Aguayo, Jorge
    Munoz, Santiago
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376