An a posteriori error estimator for an unsteady advection-diffusion-reaction problem

被引:5
|
作者
Araya, Rodolfo
Venegas, Pablo [1 ]
机构
[1] Univ Concepcion, CI2MA, Concepcion, Chile
关键词
Advection-diffusion-reaction problem; A posteriori error estimators; Parabolic problems; Stabilized methods; FINITE-ELEMENT METHODS; PARABOLIC EQUATIONS; DISCRETIZATION; STABILITY;
D O I
10.1016/j.camwa.2013.09.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce an a posteriori error estimator, of the residual type, for the unsteady advection-diffusion-reaction problem. For the discretization in time we use an implicit Euler scheme and a continuous, piecewise linear triangular finite elements for the space together with a stabilized scheme. We prove that the approximation error is bounded, by above and below, by the error estimator. Using that, an adaptive algorithm is proposed, analyzed and tested numerically to prove the efficiency of our approach. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2456 / 2476
页数:21
相关论文
共 50 条
  • [1] A hierarchical a posteriori error estimate for an advection-diffusion-reaction problem
    Araya, R
    Poza, AH
    Stephan, EP
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (07): : 1119 - 1139
  • [2] Robust a-posteriori estimator for advection-diffusion-reaction problems
    Sangalli, Giancarlo
    MATHEMATICS OF COMPUTATION, 2008, 77 (261) : 41 - 70
  • [3] An almost-robust a posteriori estimator for the one-dimensional advection-diffusion-reaction problem
    Sangalli, G
    APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY, 2005, 69 : 496 - 507
  • [4] RBFs Collocation Method for an Advection-Diffusion-Reaction Problem
    Alessia, Perticarini
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [5] A posteriori error analysis of IMEX multi-step time integration methods for advection-diffusion-reaction equations
    Chaudhry, Jehanzeb H.
    Estep, Donald
    Ginting, Victor
    Shadid, John N.
    Tavener, Simon
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 285 : 730 - 751
  • [6] Combining adjoint stabilized methods for the advection-diffusion-reaction problem
    Hauke, Guillermo
    Sangalli, Giancarlo
    Doweidar, Mohamed H.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (02): : 305 - 326
  • [7] REPLACEMENTS IN THE FINITE ELEMENT METHOD FOR THE PROBLEM OF ADVECTION-DIFFUSION-REACTION
    Savula, Ya H.
    Turchyn, Y., I
    JOURNAL OF NUMERICAL AND APPLIED MATHEMATICS, 2019, 1 (130): : 84 - 98
  • [8] A POSTERIORI ERROR ESTIMATOR FOR DIFFUSION-ADVECTION-REACTION BOUNDARY VALUE PROBLEMS: PIECEWISE LINEAR APPROXIMATIONS ON TRIANGLES
    Ostapov, O. Yu.
    Shynkarenko, H. A.
    JOURNAL OF NUMERICAL AND APPLIED MATHEMATICS, 2011, 2 (105): : 111 - 123
  • [9] A posteriori error estimator and h-adaptive finite element method for diffusion-advection-reaction problems
    Ostapov, O.
    Vovk, O.
    Shynkarenko, H.
    RECENT ADVANCES IN COMPUTATIONAL MECHANICS, 2014, : 329 - 337
  • [10] A FRAMEWORK FOR ROBUST A POSTERIORI ERROR CONTROL IN UNSTEADY NONLINEAR ADVECTION-DIFFUSION PROBLEMS
    Dolejsi, Vit
    Ern, Alexandre
    Vohralik, Martin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 773 - 793