A First Evaluation of a Multi-Modal Learning System to Control Surgical Assistant Robots via Action Segmentation

被引:15
作者
De Rossi, Giacomo [1 ]
Minelli, Marco [2 ]
Roin, Serena [1 ]
Falezza, Fabio [1 ]
Sozzi, Alessio [3 ]
Ferraguti, Federica [2 ]
Setti, Francesco [1 ]
Bonfe, Marcello [3 ]
Secchi, Cristian [2 ]
Muradore, Riccardo [1 ]
机构
[1] Univ Verona, Dept Comp Sci, I-37134 Verona, Italy
[2] Univ Modena & Reggio Emilia, Dept Engn Sci & Methods, I-42122 Reggio Emilia, Italy
[3] Univ Ferrara, Dept Engn, I-44122 Ferrara, Italy
来源
IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS | 2021年 / 3卷 / 03期
基金
欧盟地平线“2020”;
关键词
Medical robotics; cognitive robotics; R-MIS; action segmentation; model-predictive control;
D O I
10.1109/TMRB.2021.3082210
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The next stage for robotics development is to introduce autonomy and cooperation with human agents in tasks that require high levels of precision and/or that exert considerable physical strain. To guarantee the highest possible safety standards, the best approach is to devise a deterministic automaton that performs identically for each operation. Clearly, such approach inevitably fails to adapt itself to changing environments or different human companions. In a surgical scenario, the highest variability happens for the timing of different actions performed within the same phases. This paper presents a cognitive control architecture that uses a multi-modal neural network trained on a cooperative task performed by human surgeons and produces an action segmentation that provides the required timing for actions while maintaining full phase execution control via a deterministic Supervisory Controller and full execution safety by a velocity-constrained Model-Predictive Controller.
引用
收藏
页码:714 / 724
页数:11
相关论文
共 32 条
[1]  
Ahad M.A.R., 2013, MOTION HIST IMAGES A, P19
[2]  
[Anonymous], 2014, MICCAI WORKSH M2CAI
[3]  
[Anonymous], 2015, C TRACK P 3 INT C LE
[4]  
Bonfê M, 2012, P IEEE RAS-EMBS INT, P56, DOI 10.1109/BioRob.2012.6290700
[5]  
Calli Berk, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P2839, DOI 10.1109/ICRA.2017.7989331
[6]  
Cefalo M., 2018, IFAC PAPERSONLINE, V51, P220, DOI [10.1016/j.ifacol.2018.11.545, DOI 10.1016/J.IFACOL.2018.11.545]
[7]  
Cheng LB, 2019, IEEE INT CON AUTO SC, P1774, DOI [10.1109/coase.2019.8843275, 10.1109/COASE.2019.8843275]
[8]  
De Rossi G, 2019, IEEE INT C INT ROBOT, P7827, DOI [10.1109/iros40897.2019.8967667, 10.1109/IROS40897.2019.8967667]
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]   Knowledge transfer for surgical activity prediction [J].
Dergachyova, Olga ;
Morandi, Xavier ;
Jannin, Pierre .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2018, 13 (09) :1409-1417