Free generic Poisson fields and algebras

被引:14
作者
Kaygorodov, Ivan [1 ]
Shestakov, Ivan [2 ,3 ]
Umirbaev, Ualbai [4 ]
机构
[1] Univ Fed ABC, Sao Paulo, Brazil
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[3] Soboley Inst Math, Novosibirsk, Russia
[4] Wayne State Univ, Detroit, MI USA
基金
巴西圣保罗研究基金会;
关键词
Automorphism; free algebra; generic Poisson algebra; generic Poisson module; ENVELOPING-ALGEBRAS; AUTOMORPHISMS; CENTRALIZERS; RINGS;
D O I
10.1080/00927872.2017.1358269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The free generic Poisson algebras (GP-algebras) over a field k of characteristic 0 are studied. We prove that certain properties of free Poisson algebras are true for free GP-algebras as well. In particular, the universal multiplicative enveloping algebra U = U(GP(x(1), . . . , x(n))) of a free GP-field GP(x(1), . . . , x(n)) is a free ideal ring. Besides, the Poisson and polynomial dependence of two elements are equivalent in GP(x(1), . . . , x(n)). As a corollary, all automorphisms of the free GP-algebra GP{x, y} are tame and we have the isomorphisms of groups of automorphisms Aut GP{x, y} congruent to Aut P{x, y} congruent to Aut k[x, y].
引用
收藏
页码:1799 / 1812
页数:14
相关论文
共 31 条
[1]  
[Anonymous], 2006, New Mathematical Monographs
[2]   UNIVERSAL POISSON ENVELOPE FOR BINARY-LIE ALGEBRAS [J].
Arenas, Manuel ;
Arenas-Carmona, Luis .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (05) :1781-1789
[3]   CENTRALIZERS IN FREE ASSOCIATIVE ALGEBRAS [J].
BERGMAN, GM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 137 (MAR) :327-&
[4]  
Cohn P.M., 1964, P LOND MATH SOC, V14, P618, DOI DOI 10.1112/PLMS/S3-14.4.618
[5]   AUTOMORPHISMS OF A FREE ASSOCIATIVE ALGEBRA OF RANK-2 .1. [J].
CZERNIAKIEWICZ, AJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 160 (NOCT) :393-+
[6]  
Eilenberg S., 1948, ANN SOC POL MATH, V21, P125
[7]  
Jacobson N., 1969, STRUCTURE REPRESENTA
[8]   On total birational transformations of the plane. [J].
Jung, WE .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1942, 184 (1/4) :161-174
[9]   The Freiheitssatz for Generic Poisson Algebras [J].
Kolesnikov, Pavel S. ;
Makar-Limanov, Leonid G. ;
Shestakov, Ivan P. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2014, 10
[10]  
Makar-Limanov L., FREE POISSON FIELDS